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Summary 

 
 In this White Paper we derive the complete solution to the On-Pylon Turn 
maneuver. The equation for the pivotal altitude is derived from simple classical 
dynamics. The equation for the pivotal altitude given in the FAA Airplane Flying 
Handbook (8083-3A, 2004) is  
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11.3
TASVh    

Where VTAS is the TAS in knots. However in the latest version (8083-3B, 2016), the 
pivotal altitude is given by  

 
2

11.3
GVh    

Where VG is the groundspeed in knots. Both of the above equations for the pivotal 
altitude are shown to be in error when compared to the derived solution, which is given 
by  

 
11.3
TASV Vh T   

WhereVT  is the groundspeed in knots in the transverse direction (i.e. it does not include 
the radial component of the wind). Here  

 (1 Cos )TAS WV V VT T �   

Where WV  is the windspeed ratio given by Wind

TAS

V
V

, and T  is the angular position measured 

from the downwind position ( 0T  ).  The complete solution of the On-Pylon Turn 
provides the following information as a function ofT : 

(1) Required bank angle  
(2) Required rate of turn 
(3) Required rate of climb/descent 
(4) Required distance from the pylon 
(5) Required wind correction angle (WCA) 

We show that the key parameter in (1)-(5) is the windspeed ratio. In addition, the 
solution of the On-Pylon Turn maneuver shows that the maximum bank angle occurs on 
the downwind position , where the aircraft is closest to the pylon, while the minimum 
bank angle occurs on the upwind position ( 180T  ), where the aircraft is farthest from 
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the pylon. The track of the aircraft while holding the pylon is shown to be an ellipse with 
the eccentricity of the ellipse determined by windspeed ratio WV . 

          The origin of the visual cues that the Pilot observes which indicate whether the 
aircraft is above or below the pivotal altitude are also derived based on physical 
arguments. The formulas that provide the results for items listed in (1)-(5) above are 
shown to provide a significant amount of information that allows the Pilot/Instructor to 
plan and execute the maneuver, such that the bank angle does not exceed a specified 
value on the downwind and the required maximum rate of climb is below the maximum 
rate of climb of the aircraft. We show that for large windspeed ratios (i.e. t  0.2) the 
required rate of climb to hold the pylon can easily exceed the performance of a C-172 
when flying the maneuver at 90 KTAS. 

 Finally, we show that the On-Pylon Turn maneuver can be flown accurately in the 
presence of a wind, using a constant pivotal altitude, if power is utilized to vary the TAS 
around the pylon. A comparison of the aircraft track, the bank angle, and turn rate, for 
various windspeed ratios is made for both the constant TAS and constant pivotal 
altitude methods. 

 

1.0 Introduction 
Ground reference maneuvers are maneuvers that are required for both the 

Private Pilot and the Commercial Pilot Certificate. In the case of the Private Pilot 
Certificate, the Pilot must satisfactorily demonstrate: (a) Rectangular Course, (b) S-
Turns across a Road, and (c) Turns around a Point. In the case of the Commercial Pilot 
Certificate, the Pilot must satisfactorily demonstrate Eights-On Pylons. In a previous 
White Paper (Ref. 1), we discussed in significant detail, Turns around a Point. We 
showed the key parameter in all ground reference maneuvers is the windspeed ratio, 
which is defined as the ratio of the windspeed to the aircraft’s TAS.  

Prior to teaching Eights-on-Pylons, we usually introduce the Student to the 
simple On-Pylon Turn maneuver. This maneuver allows the Student to understand the 
concept of pivotal altitude, which is the altitude that allows an imaginary line extended 
from the Pilot’s eye to the pylon, which is parallel to the lateral axis of the aircraft, 
appears to pivot around the pylon. It also introduces the Pilot to the key observations 
which are used to determine whether the aircraft is above or below the correct pivotal 
altitude. In the Airplane Flying Handbook (FAA-H-8083-3A, 2004, Ref. 2), the pivotal 
altitude was estimated as the square of the TAS divided by 11.3, where the TAS is in 
knots. However, in the latest version of the Airplane Flying Handbook (FAA-H-8083-3B, 
2016, Ref. 3), the pivotal altitude was estimated as the square of the groundspeed 
divided by 11.3, where the groundspeed is in knots. Although the results are identical 
when the windspeed is zero, we will show that the pivotal altitude in the presence of a 
wind is incorrect as given in both versions of the Airplane Flying Handbook. 
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In Section 2 we introduce the dynamics of the turn and the concept of pivotal 
altitude. We derive the correct expression for the Centripetal acceleration during the On-
Pylon Turn maneuver. This result is then used to derive the correct formula for the 
pivotal altitude. In Section 3 we derive the ground track of the On-Pylon Turn maneuver 
as a function of the angular position relative to the downwind. In Section 4 we derive 
equations for the required (1) bank angle, (2) rate of turn and (3) rate of climb/descent 
as a function of the position relative to the downwind in order for the Pilot to hold the 
pylon. We also show how to select the combination of both TAS and the radius on the 
downwind, such that the aircraft can meet both the maximum required rate of climb 
during the maneuver while keeping the bank angle below a specified maximum value. In 
Section 5 we describe how to determine whether the aircraft is above or below the 
pivotal altitude, and what corrections are necessary to bring the aircraft back on the 
pylon. In Section 6 we discuss a different method for holding the pylon in the presence 
of a wind, while flying at a constant pivotal altitude and varying the TAS. We summarize 
the results in Section 7 and provide references in Section 8. 

In addition, we have highlighted important formulas and statements in red, which 
are the takeaways that all Pilots/Instructors should understand in order to fly the On-
Pylon Turn maneuver with precision. 

 

2.0 Dynamics of the On-Pylon Turn 
 In order to determine the formula for the pivotal altitude, it is necessary for one to 
determine the Centripetal acceleration that arises during the On-Pylon Turn. Recall that 
during the On-Pylon Turn, an imaginary line extended from the Pilot’s eye to the pylon, 
which is parallel to the lateral axis of the aircraft, appears to pivot around the pylon. 
Under these conditions, it is beneficial to analyze the planar motion of the aircraft in a 
rotating radial-transverse coordinate system. Figure 1 shows the rotating radial-
transverse coordinate system, where îr is the unit vector in the radial direction and θ̂i  is 
the unit vector in the transverse direction. The pylon is located at O and the aircraft is 
located is point p, and is moving along the track s. Here T  is the angular position 
around the pylon. Note that the radial unit vector and transverse unit vector are 
perpendicular to each other. 



5 
 

 

              Figure 1: Radial-Transverse Coordinate System 

 

 Using this coordinate system, the rate of rotation of the aircraft around the pylon is just  

  

 d V
dt r

TTT             (1)                

Here, VT  is the transverse velocity of the aircraft, and r is the radial distance from the 
pylon to the aircraft. In order to determineVT , it is necessary to add the TAS of the 
aircraft to the component of the wind in the transverse direction. Figure 2 shows the 
wind, WV   aligned in the positive-y direction, and the angle T  which is measured from 

the downwind position (T =0) in a counter-clockwise direction. Here, T is the non-
uniform rotational rate of the aircraft around the pylon. In addition, the unit vector î t  is 
directed along the tangent to the curve s at the point p, which is the direction of the 
actual ground track of the aircraft. 
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Figure 2: Radial-Transverse Coordinate Showing Components of 
Velocity 

 

Figure 3 shows the components of the velocity of the aircraft in the ˆ
ri , θ̂i  and ˆti  

directions. Here VG is the aircraft groundspeed and includes both the radial and 
transverse components of the velocity. Recall the rotational rate is only dependent on 
the transverse groundspeed. 
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Figure 3: Components of the Ground Speed in the ˆ ˆ ˆ r tθi , i , i   Coordinate System 

 

We now need to express the acceleration of the aircraft in the rotating coordinate 
system. The acceleration of an aircraft in a rotating coordinate system is straight 
forward to derive and is shown in many classical textbooks on dynamics, such as Ref. 
4. However, we will provide the derivation below in order for the reader to understand 
how one obtains the correct Centripetal acceleration. 

 If the aircraft is moving along a curve around the pylon, the position vector r  is 
given by  

  

 r̂ri r            (2) 

Where r is the radial distance from the pylon to the center of gravity of the aircraft, and 

r̂i is the unit vector in the radial direction. The velocity of the aircraft is given by the 
derivative of the position vector with respect to time, i.e. 

 
ˆˆd dr r

dt dt
 � r

r
r ii        (3) 

Note that second term in eq.(3) is the derivative of the unit vector îr with respect to time. 
One needs to include this term due to the fact that the coordinate system is rotating and 
the direction of ˆri  is changing with time. Since the coordinate system is rotating about 
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an axis perpendicular to the x-y plane, the derivative of ˆri is just the cross product of the 

two vectors T  and ˆri . The orientation of this cross product is perpendicular to r and is 

subject to the right-hand rule. Thus, we can express the derivative of ˆri with respect to 
time as  

 
ˆ

ˆ ˆr
r

d
dt TT  
i i iT u       (4) 

Here, ˆTi is a unit vector in the direction perpendicular to r .Thus eq. (3) becomes  

 ˆ ˆ
r

d r r
dt TT  �i ir v        (5) 

Therefore, eq. (5) gives the velocity in terms of the radial and transverse components. 
The acceleration of the aircraft around the pylon is obtained by differentiating the 
velocity vector with respect to time, i.e. 

 
ˆ ˆ

ˆ ˆ( )r
r

d dr r r r r
dt dt

T
TT T T� � � �

i ii ia = r =        (6) 

In differentiating eq. (5), we have introduced the term 
ˆd
dt
Ti , which can be expressed as  

 ˆˆ r
d
dt
T

T T  �
i iT u L         (7) 

Note that the negative sign in eq.(7) is due to the sign of the cross product being 
determined by the right-hand rule. Equation (6) can be simplified to give the final result 
for the accelerationa , i.e. 

 2 ˆ ˆ) ( 2 )r(r - r r r TT T T� �i ia =      (8) 

Equation (8) provides the resultant acceleration in both the radial and transverse 
directions. The radial component is called the Centripetal acceleration, and the 
transverse component is the transverse acceleration. However, since the coordinate 
system is rotating with the non-uniform rotation rate, one would expect the transverse 
acceleration relative to the rotating coordinate system to be identically zero in the case 
of the aircraft flying at constant TAS. This fact will be borne out in the analysis below.  

In Figure 2, the wind is oriented in the positive-y direction, such that, 0T   
corresponds to the downwind position, and 180T   degrees corresponds to the upwind 
position. One can then express the radial and transverse components of the wind as 
follows: 
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( ) sin
( ) Cos
W r W

W W

V V
V VT

T
T

 
 

       (9) 

The velocity in the transverse direction is given by 

 ( ) CosTAS W TAS WV V V V VT T T �  �     (10) 

The velocity in the radial direction is given by 

 sinr Wr V V T          (11) 

 We can express the transverse acceleration component in eq. (8) as follows: 

 ( ) ( )( 2 ) { } 2d r d rr r r r r
dt dt
T TT T T T T�  � �  �      (12) 

Using eq.(1), it is easy to see that  

 CosTAS Wr V V VTT T  �        (13) 

During the On-Pylon Turn maneuver, we will assume both the TAS and the windspeed 
are constant during the maneuver. Thus, eq. (12) becomes  

 ( ) Sin Sin 0W W
d r r V V
dt
T T TT TT�  � �       (14) 

Equation (14) shows the transverse acceleration to be zero relative to the rotating 
coordinate system, which is what was stated earlier. It is now clear the radial 
acceleration relative to the rotating coordinate system is given by 

 2 2) ( )rdV(r - r r
dt

T T �     (15) 

Since r VTT   , and using eq. (11), eq. (15) becomes 

 2( ) ( Cos )r TAS
W TAS

dV V Vr V V V
dt r

T
TT TT T T�  �  �  �      (16) 

The negative sign just indicates that the Centripetal acceleration is directed inward 
toward the pylon. Here we have used eq. (1) to obtain the final result above. 

 During the On-Pylon Turn maneuver, the horizontal component of the lift is 
directed toward the pylon and is equal to the mass times the magnitude of the 
Centripetal acceleration. Figure 4a shows that the horizontal component of the lift is just 
equal to sinL I , where I  is the bank angle. Since the mass of the aircraft is equal to the 
weight divided by gravitational acceleration g, Newton’s Second Law can be written as  
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 ( ) SinTASW V V L
g r

T I    (17) 

We can define Centrifugal force as an apparent force with the magnitude equal to the 
Centripetal force and acting in the opposite direction. In this approach, one allows for an 
equilibrium balance of forces between the horizontal component of the lift and the 
Centrifugal force.  

 

 

              

               Figure 4a: Balance of Forces in the On-Pylon Turn 

                         (Shallow Flight Path Angle Approximation) 

 

 During the On-Pylon Turn maneuver in the presence of a wind, the aircraft is 
climbing and descending to hold the pylon. Figure 4b shows the balance of forces in the 
vertical plane during the climbing portion of the maneuver.  
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          Figure 4b- Balance of Forces in the Vertical Plane during Climbing Flight 

 

 

Balancing the forces in the vertical direction in Figure 4b, provides us with the following 

 Cos CosL WI J      (18) 

Substituting eq. (18) into eq. (17) gives us the final equation describing the dynamics of 
the On-Pylon Turn, i.e. 

 Tan
cos
TASV V
gr

TI
J

      (19) 

Where, VT  is given by eq. (13). Finally, since the aircraft must be pivoting on the pylon 
during the On-Pylon Turn maneuver, the following relationship exists between the 
aircraft altitude, h, and the radial distance from the pylon, i.e.  

 Tanh
r

I       (20) 

 

This simple relationship can be seen in Figure 5. 
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     Figure 5: Relationship between the Pivotal Altitude and Distance from Pylon 

 

 If we equate the right-hand side of eq. (19) with the left-hand side of eq.(20), we see 
that the pivotal altitude is given by  

 
cos
TasV Vh
g

T

J
       (21) 

Note that eq.(21) also applies to descending flight, with the sign of the flight path angle 
going from a positive value to a negative value. In the case of General Aviation aircraft, 
the flight path angle during this maneuver is usually less than 12-14 degrees for the 
wind speeds of interest, and thus, the “Shallow Flight Path Angle” approximation can be 
used, where we can replace the cosJ  in eq. (21) with the value unity. With this 
approximation, eq. (21) reduces to  

 TASV Vh
g

T       (22) 

Although we have assumed the “Shallow Flight Path Angle Approximation”, it will be 
shown in Section 4.2 by bounding the flight path angle, that this is a valid assumption. 
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It is best to rewrite eq. (22) as 

 
2

(1 Cos )TAS
W

Vh V
g

T �      (23) 

Where,  

 W
W

TAS

VV
V

       (24) 

Again, we note that the key parameter characterizing the effect of the wind is the 
windspeed ratio WV . It is important to emphasize that VT  is the ground speed in the 
transverse direction and does not include the radial component of the wind. It is easy to 
see that in the case of zero wind, i.e. VW=0, the pivotal altitude is given by 

 
2
TAS

NW
Vh
g

      (25) 

Thus, the pivotal altitude in the presence of a wind can be given in terms of hNW i.e. 

 (1 Cos )NW Wh h V T �        (26) 

 In the Airplane Flying Handbook (FAA 8083-3A, 2004), the pivotal altitude in the 
presence of a wind is given by  

 
2

2004
TAS

NW
Vh h
g

     (27) 

Whereas, in the Airplane Flying Handbook (FAA-8083-3B, 2016), the pivotal altitude in 
the presence of a wind is given by  

 
2

2016
GVh
g

    (28) 

Where VG is defined as the aircraft groundspeed. These results are clearly in error when 
compared to the correct solution for the pivotal altitude given by eq.(21). 

It is easy to see that on the downwind (i.e. 0T  ), the transverse groundspeed is
(1 )TAS WV V� , whereas, on the upwind (i.e. 180T  ), the transverse groundspeed is

(1 )TAS WV V� . When the aircraft is at 90T   and 270T   degrees, the transverse ground 
speed is VTAS. Note that 90T  and 270T  do not correspond to the crosswind points on 
the ellipse. The crosswind points correspond to values of T  greater than 90 degrees 
and less than 270 degrees, the actual values depending on the windspeed ratio 
However, at 90T   or 270T  , the pivotal altitude is NWh h , whereas on the downwind it 



14 
 

is (1 )NW Wh h V � , and on the upwind it is (1 )NW Wh h V � . The difference in pivotal altitude 
between the downwind and upwind positions during the On-Pylon Turn maneuver is just 

 2 W NWh V h'       (29) 

Equation (29) shows that for a given VTAS,  

      2 W
NW

h V
h
'

       (30) 

Thus, the percent difference in the pivotal altitude between the downwind and upwind 
position is just twice the windspeed ratio.  

 The latest version of the Airplane Flying Handbook (FAA-8083-3B) states, “The 
pivotal altitude is estimated by dividing the square of the groundspeed by 15 (if the 
airspeed is in miles per hour) or dividing by 11.3 if the groundspeed is in knots”. In order 
to understand the conversion process one should understand that for the pivotal altitude 
to be in feet, we need to convert VTAS to feet per sec. Note the gravitational constant 
g=32.174 feet/sec2. In order to convert the TAS in miles per hour to feet/sec, we multiply 
the TAS by 1.4667. Thus, the no wind pivotal altitude is just  

 
2

14.956
TAS

NW
Vh        (31) 

Which can be approximated by  

 
2

15
TAS

NW
Vh      (32) 

If the VTAS is in knots, then in order to convert the VTAS to feet/sec, we multiply the VTAS 
by 1.6875. In this case the no wind pivotal altitude becomes 

 
2

11.298
TAS

NW
Vh       (33) 

Which can be approximated by  

 
2

11.3
TAS

NW
Vh        (34) 

 In Section 3 we derive the shape of the track of the aircraft while performing an 
On-Pylon Turn maneuver. 
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3.0 Track of the Aircraft during the On-Pylon Turn 
 In Section 2, we derived the dynamics of the On-Pylon Turn. We showed that the 
transverse velocity was given by  

 (1 Cos )TAS W
dV r V V
dtT
T T  �    (35) 

In addition, the radial velocity of the aircraft is given by  

 Sinr TAS W
drV r V V
dt

T        (36) 

Dividing eq. (36) by eq. (35) we obtain the following equation 

 1 Sin
1 Cos

W

W

dr
dr Vdt

d r d Vr
dt

T
T T T
  

�
       (37) 

Eq. (37) can be rewritten as  

 ( Sin )
1 Cos
W

W

dr V d
r V

T T
T

 
�

       (38) 

Using elementary calculus we can integrate eq. (38) which results in the following 
expression for r, the distance of the aircraft’s CG from the pylon, i.e. 

 0
(1 )

(1 Cos )
W

W

Vr r
V T
�

 
�

     (39) 

Here r0 is an arbitrary constant which is the distance from the pylon to the aircraft CG 
when on the downwind. Thus, we see that there are an infinite number of solutions with 
the same pivotal altitude but with different values of r0 and associated bank angles. 
Equation (39) is the equation of an ellipse, with the eccentricity of the ellipse given by 
the windspeed ratio WV . Table 1 shows the distance of the aircraft from the pylon as a 
function of four angular positions around the pylon. It is easy to see that the aircraft is 
closest to the pylon when on the downwind ( 0T  ), and is farthest from the pylon when 
on the upwind ( 180T  ). At T  90 and 270 degrees, the distance from the pylon is 
somewhere between the downwind and upwind distances from the pylon. The ratio of 
the distance from the pylon on the upwind to the downwind is given by  

 
0

(180) (1 )
(1 )

W

W

r V
r V

�
 

�
      (40) 
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Thus, for a windspeed ratio of 0.2, we see that the distance from the pylon on the 
upwind is 50% larger than the distance on the downwind. 

   Table 1: Distance from the Pylon (
0

r
r

) as a Function of T   

T (degrees) 0/r r   
0 1 

90 (1 )WV�  
180 (1 )

(1 )
W

W

V
V

�
�

 

270 (1 )WV�  
 

 

Figure 6 show the ground track of the aircraft when flying the On-Pylon Turn in the 
presence of a wind. We show the values of x and y normalized to 0r , the distance from 
the pylon on the downwind. The ground tracks correspond to four values of the 
windspeed ratio, WV =0, 0.1, 0.2, and 0.3. These values correspond to the different 

eccentricity of the ellipse, with 0WV   corresponding to a circle. Note that a windspeed 
ratio of 0.3 will normally encompass the maximum strength of the wind that the Pilot 
would encounter while executing the maneuver between 90 and 100 knots TAS, i.e. 27-
30 knots. 

 

 

                              Figure 6: Ground Track around the Pylon for Various WV   

Pylon 
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 Figure 7 shows the aircraft ground track corresponding to a windspeed ratio of 
0.2. Note that we have designated points A, B, C, and D, which are associated with the 
downwind, crosswind, upwind and crosswind points. At the upwind and downwind 
points the aircraft is aligned such that the wind correction angle is identically zero. Thus, 
the aircraft will attain it maximum wind correction somewhere between points A and C.  

 

                             Figure 7: Ground Track for On-Pylon Turn with 0.2 WV   
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At point B the aircraft’s track is parallel to the x-axis, so the aircraft must have 
established a WCA that is consistent with a wind perpendicular to a road aligned with 
the x-axis. In Ref. 1 we derived the solution to the wind triangle problem, and showed 
that the WCA was given by  

Sin SinWVV D      (41) 

Where V is the WCA and D  is the angle between the wind direction and the ground 
track of the aircraft. Since at points B and D, 90D  degrees, the WCA is just given by 

 1Sin ( )WVV �        (42) 

In the case of WV =0.2, the WCA is 11.54 degrees.  

We will now show that the maximum value of the WCA will always correspond to 
points B and D. Since the aircraft longitudinal axis is always pointed 90 degrees ahead 
of the lateral axis (i.e.T ), the direction of the longitudinal axis is given by  

 90long axisT T�  �      (43) 

The WCA is the angle between the longitudinal axis and the track of the aircraft. The 
track of the aircraft is given by the direction of the tangent to the ellipse at any value of 

T . The tangent to the ellipse at any point is given by  

 
( )

( )

dy
dy d

dxdx
d

T

T

        (44) 

One can express x and y as   

          
Cos
Sin

x r
y r

T
T

 
 

            (45) 

Substituting eq. (39) into eq. (45) and then differentiating the result with respect toT , 
gives the following expression for the tangent to the ellipse 

 (Cos )
( Sin )

Wdy V
dx

T
T
�

 
�

        (46) 

Therefore the angle of the track of ellipse is just  

 1
tan Tan ( )dy

dx
T �           (47) 
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Equation (46) is written in this manner in order for 1Tan ( )dy
dx

�  to give the correct value of

tanT .Thus, the WCA is given by  

           1(90 ) Tan ( )dyWCA
dx

T � � �        (48) 

If we are interested in the location of the maximum value of the WCA we can 
differentiate eq.(48) with respect to T  and set the result equal to zero. The roots of this 
equation provide the location of where the maximum/minimum values of the WCA are 
located. Performing the differentiation and setting the result to zero, gives the following 
equation to solve 

 ( Cos ) 0W WV V T�       (49) 

The solution of eq. (49) provides two roots, which are given by 

 
0

Cos
W

W

V
V T

 

 �
         (50) 

The root 0WV   corresponds to the zero wind case in which the WCA is identically zero 
and the track of the aircraft is given by a circle. In this case we have located the 
minimum WCA. This particular case of the On-Pylon Turn corresponds to a Turn around 
a Point at the pivotal altitude. The second root, CosWV T � , corresponds to the location 

of the maximum WCA. Note that eq. (46) shows that the value of dy
dx

 is identically zero 

when CosWV T � , and therefore point B and D correspond to the maximum WCA. The 

maximum WCA for point B is located at 1 1Cos ( ) Cos ( 0.2) 101.54WVT � � �  �  degrees, 
and thus, the direction of the aircraft’s longitudinal axis is given by 90 101.54long axisT �  �

degrees. Since the tangent to the ellipse at this point is oriented at 180T   degrees, the 
WCA is just the difference between 191.54 degrees and 180 degrees, which is 11.54 
degrees. The positive sign indicates that the WCA is inward toward the pylon. At point 
D, the 1Cos ( ) 258.46WV

� �  , and thus the direction of the aircraft’s longitudinal axis is 
given by 90 258.46long axisT �  � . Since the tangent to the ellipse at this point is oriented at 

360T  degrees, the WCA is just the difference between 348.46 degrees and 360 
degrees, which is -11.54 degrees. The negative sign indicates that the WCA is outward 
from the pylon. Thus, one can easily determine the magnitude of the maximum WCA 
during the On-Pylon Turn using eq.(42). When the windspeed ratio is less than 0.5, the 
maximum WCA in degrees can be estimated by the following equation 

 max( ) 60 WWCA V       (51) 
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It can be seen from Figure 7 that during the On-Pylon Turn, the magnitude of the 
aircraft’s WCA at point A is zero, reaches a maximum at point B, decreases to zero at 
point C and again reaches its maximum point D.  

In Section 4 we will utilize the results of Section 2 and Section 3 to determine the 
aircraft performance during the On-Pylon Turn.  

 

 

4.0 Aircraft Performance during the On-Pylon Turn 

 
4.1 Required Turn Rate and Bank Angle 
 Since the aircraft turn rate is given by eq.(1), we can express the turn rate using 
eqs. (13) and (39). The resultant turn rate is given by the expression 

 
2

0

(1 Cos )( )
(1 )

TAS W

W

V V V
r r V
T TZ T �

   
�

     (52) 

When the windspeed ratio is zero, the turn rate becomes  

 
0

TAS
NW

V
r

Z       (53) 

Again, r0 is the distance from aircraft to the pylon at 0T  , i.e. on the downwind. 

Therefore, it is best to introduce the turn rate ratio, which is the ratio of the actual turn 
rate in a wind to the turn rate with no wind. This results in the following expression for 
the turn rate ratio  

 
2(1 Cos )

(1 )
W

NW W

V
V

Z T
Z

�
 

�
      (54) 

Table 2 shows the turn rate ratio corresponding to the identical four points 
around the ellipse as shown in Table 1   
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    Table 2: Turn Rate Ratio Versus T   

T (degrees) 

NW

Z
Z

  

0 (1 )WV�   
90 1

(1 )WV�
 

180 2(1 )
1

W

W

V
V

�
�

  

270 1
(1 )WV�

 

  
 

 
 Using eqs.(19) and (39), the equation for the bank angle becomes 

   
2 2

0

(1 Cos )Tan ( )
(1 )

TAS W

W

V V
gr V

TI �
 

�
     (55) 

If we define the no wind bank angle as 

 
2

0

Tan TAS
NW

V
gr

I        (56) 

 We can express the bank angle ratio as 

 
2Tan (1 Cos )

Tan (1 )
W

NW W

V
V

I T
I

�
 

�
      (57) 

 

Table 3 shows the bank angle ratio at the identical four values of T  shown in Tables 1 
and 2. Note that the bank angle ratio and the turn rate ratio are identical, i.e. 

 Tan
Tan NW NW

I Z
I Z

      (58) 
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     Table 3: Bank Angle Ratio 

T (degrees) Tan
Tan NW

I
I

 

0 (1 )WV�   
90 1

(1 )WV�
 

180 2(1 )
1

W

W

V
V

�
�

  

270 1
(1 )WV�

 

 

 

 If one is interested in flying a specified maximum bank angle on the downwind, 
eq. (55) can be used to determine the initial distance from the pylon to the aircraft. As 
an example, if we want to limit the maximum bank angle to maxI on the downwind, the 
distance from the pylon on the downwind is given by 

 
2

0
max

(1 )
tan
TAS

W
Vr V
g I

 �    (59) 

 Thus, we see the value of r0 depends on VTAS, WV  and maxI .  

 In the next Section, we show how to choose the values of VTAS and maxI . 

 

4.2 Required Rate of Climb/Descent 
  When there is no wind, the pivotal altitude will be constant during the On-Pylon 
Turn maneuver when flown at a constant TAS. However, in the presence of a wind, i.e.

0WV z , the aircraft will need to descend when travelling from the downwind to the 
upwind portion of the On-Pylon Turn and will need to climb when travelling from the 
upwind to the downwind portion of the On-Pylon Turn. Thus, in order to keep the TAS 
constant during the maneuver, power will need to be adjusted. We will now determine 
the required rate of climb/descent as a function of the position of the aircraft around the 
pylon.  

We can calculate the required rate of climb or descent by computing the quantity
dh
dt

. The equation for the required pivotal altitude as a function of T  is given by eq. (26).  

Therefore, we can calculate the rate of climb or descent using the following equation 
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 dh dh d
dt d dt

T
T

        (60) 

The quantity dh
dT

can be obtained by differentiating eq. (26) with respect toT . This 

results in  

 SinNW W
dh h V
d

T
T
 �         (61) 

Substituting for the rate of turn in eq. (52) into eq.(60), we obtain the following equation 
for the climb/descent rate 

 

 
2(1 Cos )( Sin )[ ]

(1 )
W

NW W NW
W

dh Vh V
dt V

TT Z �
 �

�
     (62) 

The product of hNW and NWZ  is given by  

 
2 3

0 0

( )( )TAS TAS TAS
NW NW

V V Vh
g r gr

Z       (63) 

Thus, eq. (62) becomes 

 
3

2

0

( )( )[Sin (1 Cos ) ]
1

TAS W
W

W

dh V V V
dt gr V

T T � �
�

      (64) 

Note that at T  =0 and 180 degrees, the SinT =0 and dh
dt

=0. At these points around the 

pylon, the aircraft is reaching the maximum and minimum pivotal altitudes, respectively. 

At T =90 and 270 degrees, dh
dt

becomes 

 
3

0

( )
1

TAS W

W

dh V V
dt gr V

 
�

   (65) 

Where the negative sign corresponds to T =90 degrees and the positive sign 

corresponds to T =270 degrees. Since the units of dh
dt

in eq.(64) are in feet/sec, we 

need to multiply the right hand side by 60 to obtain the rate of climb/descent in feet/min. 

This results in the following equation for dh
dt
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3

2

0

60( )( )[Sin (1 Cos ) ]
1

TAS W
W

W

dh V V V
dt gr V

T T � �
�

     (66) 

If one is interested in the maximum required climb or descent rate during the On-Pylon 
Turn maneuver, we can find the maximum or minimum value by differentiating eq. (66) 
with respect toT  and setting the result equal to zero. One can then solve the equation 
for the values of T corresponding to the maximum value of the rate of climb and 
descent. Differentiating eq. (66) with respect toT  and setting the result to zero gives the 
following equation 

 
21 1 24

(Cos )
6

W
Max

W

V
V

T
� � �

        (67) 

Therefore, the location of the maximum rate of climb/descent is given by 

 
2

1
max

1 1 24
( ) Cos ( )

6
W

W

V
V

T � � � �
        (68) 

Since the value of maxCos 0T t , the maximum lies in the first and fourth quadrants. This 
means that the maximum rate of descent will occur between T =0 and 90 degrees, and 
the maximum rate of climb will occur between T =270 and 360 degrees. A rough gauge 
on the maximum rate of climb/descent can be found by evaluating eq. (66) at 90T   
and 270 degrees, i.e. 

 
3

max
0

( ) 60( )( )
1

TAS W

W

dh V V
dt gr V

|
�

        (69) 

 In order to choose the value of VTAS which does not exceed the aircraft climb 
performance, we can substitute the expression for r0 in eq. (59) into the right hand side 

of eq.(66), which results in the following equation for dh
dt

 , i.e. 

 2
max 260 tan [Sin (1 Cos ) ]

(1 )
W

TAS W
W

dh VV V
dt V

I T T � �
�

      (70) 

Evaluating eq. (70) at T =90 and 270 degrees gives the following approximation for the 
maximum rate of climb/descent 

 max max 2( ) 60 tan
(1 )

W
TAS

W

dh VV
dt V

I|
�

        (71) 

Note that the magnitude of the maximum rate of climb/descent is proportional to VTAS 
and the maximum bank angle on the downwind, i.e. maxI . Thus, the use of higher values 
of VTAS and larger bank angles on the downwind leads to higher required rates of 
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climb/descent. It is easy to understand these results, since larger values of both bank 
angles and VTAS lead to higher turn rates, which translate to a shorter time required for a 
given change in the pivotal altitude from the downwind to the upwind and from the 
upwind to the downwind.   

 Equation (71) can be written in the following non-dimensional form 

 
max

2
max

( )
60

tan (1 )
W

TAS W

dh
VdtH

V VI
  

�
       (72) 

In this form, the right hand side is only a function of the windspeed ratio. Table 4 below, 
shows the values of the magnitude of H corresponding to values of WV = 0.1, 0.2, and 
0.3. 

         Table 4: Absolute Values of H versus WV  

WV  H  
0.1 4.959 
0.2 8.333 
0.3 10.65 

 

As an example if, VTAS=90 Kts, maxI =45 degrees, and 0.1WV  , eq. (71) gives the 
maximum required rate of climb/descent as 753.1 ft/min, whereas, using eqs.(68) and 
(70), gives the maximum rate of climb/descent as 767.7 feet/min. Here we have utilized 
the fact that the tangent of 45 degrees is unity. Note that at larger values of WV , i.e. 0.3, 
the error between eq.(70) and eq. (71), is approximately 13%. However, eq. (71) should 
be a suitable approximation for checking to see whether the required aircraft rate of 
climb performance can be met. 

Table 5 shows the magnitude of maximum required climb/descent rate obtained 
from eq. (71) for the case VTAS=90 Kts and max 45I  degrees. It is easy to see that when 

WV t  0.2, the required maximum rate of climb necessary to hold the pylon would be 
impossible to achieve in a C-172. When the windspeed ratios reach these levels, one 
would need to either reduce the TAS, reduce the maximum bank angle, or a 
combination of both. 
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Table 5: Magnitude of Maximum Rate Climb/Descent from Eq. (71) 

 ( TASV =90 Kts, max 45I   deg) 

WV  
max( )dh

dt
 (ft/min) 

0.1 753.1 
0.2 1265.6 
0.3 1617.6 

 

 

Figure 8 shows a plot of eq. (70) for the required rate of climb/descent as a 
function of angular position around the pylon. Again, we have taken VTAS=90 Kts and 

max 45I   degrees. Note that as the windspeed ratio increases, the required rate of climb 
increases, and can easily exceed the performance capability of the aircraft. Using a 
value of VTAS=90, the maximum required rate of climb is 1861 feet/min, which is beyond 
the capability of a C-172. Therefore, the Pilot/Instructor should use eq.(71) to determine 
the appropriate combination of VTAS and maxI  such that the aircraft will be able to meet 
the climb requirements for the On-Pylon Turn. Once these two parameters are selected, 
the downwind distance from the pylon r0 can be determined using eq. (59). As an 
example, with a windspeed ratio of 0.1 at VTAS=90 Kts and a 45 degree bank angle on 
the downwind, requires the aircraft to be 788.6 feet from the pylon while on the 
downwind. It is clear from Figure 8, that there is a continuous change in pivotal altitude 
during the maneuver. 

Recall that we have utilized the “Shallow Flight Path Angle” approximation in the 
above analysis. We can validate this assumption by calculating the flight path angle at 
the peak value of the rate of climb or descent. The aircraft rate of climb/descent is given 
by 

 sinTAS
dh V
dt

J      (73) 

Solving for the sinJ  we obtain the following equation 

 1sin
TAS

dh
V dt

J       (74) 

 As an example, in the case of a windspeed ratio of 0.3 with the aircraft flying at 
VTAS=90 Kts with a maximum bank angle of 45 degrees on the downwind, the required 
maximum rate of climb/descent is 1861 feet per minute. Dividing this value by the TAS 
in feet per minute (VTAS =9112.5) gives the value 0.204 forSinJ . Taking the inverse 
Sine of 0.204 shows the maximum flight path angle to be 11.77 degrees. Since
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Cos(11.77) 0.979 , which is very close to unity, thus validating the “Shallow Flight Path 
Angle” approximation for the On-Pylon Turn analysis. 

 

       Figure 8: Required Rate of Climb/Descent for the On-Pylon Turn versus T
(VTAS =90, maxI =45 degrees) 

 

 In Section 5 we discuss an innovative approach to flying the On-Pylon Turn 
maneuver, where rather than climbing or descending to hold the pylon, the Pilot utilizes 
power to control the TAS in order to hold the pylon. In this approach, the aircraft will be 
flying at a constant pivotal altitude while performing the On-Pylon Turn maneuver. 
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5.0 Flying the On-Pylon Turn in a Wind at Constant Pivotal Altitude by 
Utilizing Power to Vary the TAS 
 Let us consider the case of flying the On-Pylon Turn in the presence of a wind. If 
we allow the TAS to vary, then we can rewrite eq.(23), i.e. 

 ( cos )TAS TAS WV V Vh
g

T�
      (75) 

We will assume the aircraft enters the On-Pylon Turn on the downwind ( 0T  ), with a 
TAS given by

0TAS TV V . If we normalize VTAS and VW by
0T

V , i.e.  

0

0

TAS
TAS

T

W
W

T

VV
V

VV
V

 

 
           (76) 

We can express the pivotal altitude by  

 0

2

( ) ( cos )T
TAS TAS W

V
h V V V

g
T �      (77)     

Where 0

2

( )T
NW

V
h

g
  and the pivotal altitude on the downwind is given by  

 0

2

(0) ( )(1 )T
W

V
h V

g
 �       (78) 

 

It is easy to see that if we are interested in maintaining a constant pivotal altitude given 
by eq.(78), the normalized TAS TASV  must satisfy eq. (77). Substituting the right hand 
side of eq. (78) for the left hand side of eq.(77), gives the following quadratic equation 
for TASV   

 2 ( cos ) (1 ) 0TAS W TAS WV V V VT� � �       (79) 
    

The solution of eq. (79) gives the following expression for TASV , i.e. 

 
2cos 4(1 ) ( cos )

2
W W W

TAS
V V V

V
T T� � � �

       (80) 
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Equation (80) gives the required variation of the TAS as a function of the angular 
positionT , with the key parameter being the windspeed ratio WV . Figure 9 shows the 
required variation of the normalized TAS to hold the pylon versusT , for windspeed 
ratios given by 0.1, 0.2, and 0.3. It is easy to see that with the exception of the upwind 
and downwind locations, the variation in the normalized TAS is nearly linear. Equation 
(80) shows that the value of TASV on the downwind is unity, while on the upwind, it is

(1 )WV� . Thus approximately half the required increase in TAS occurs in the first 90 
degrees of turn, and the remaining half is required in the second 90 degrees. During the 
second half of the maneuver, the value of TASV will decrease back to unity, with half of 
the decrease occurring by T =270 and the remaining half by T =360. Note that the peak 
value of TASV  provides the information on how much the TAS will need to change from 
downwind to upwind. It can be seen that the required increase in the TAS at the upwind 
point is approximately equal to WV . As an example, in the case of WV =0.1, the TAS will 
need to increase by approximately ten percent between the downwind and the upwind. 

 

   Figure 9: Normalized TAS versus T  ( WV =0.1, 0.2, and 0.3) 

 

 In order to determine the bank angle and rate of turn for the variable TAS method 
of holding the pylon, we require the distance from the pylon as a function ofT . Using 
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eq.(38), where in the denominator we have replaced the 1 by TASV , and with 
0

W
W

T

VV
V

 , we 

obtain the following differential equation for r, 

 sin
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W

TAS W

dr V d
r V V

T T
T
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      (81) 

Substituting TASV  from eq. (80) into eq.(81), and integrating from 0T   to an arbitrary 

value ofT , gives the following equation for 
0

r
r

    

 
2

0

2(1 )
[ cos 4(1 ) ( cos ) ]

W

W W W

r V e
r V V V

[

T T

��
 

� � �
    (82) 

Where [  is given by 
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Using eqs.(82) and (83), we can obtain the following equations for the turn rate ratio and 
the bank angle ratio, i.e., 
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Where  
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         (86) 

 In the constant TAS case, the ratio of the bank angle ratio to the turn rate ratio 
was unity. However, in the variable TAS case, if we divide eq. (85) by eq. (84), we see 
that this ratio N is given by  
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tan[ ]
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[ ]

NW
TAS

NW
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IN Z
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  t       (87) 

Thus, for a given turn rate ratio, the bank angle ratio is larger when the Pilot holds the 
pylon by changing the TAS, compared to the method of holding the pylon by changing 
altitude. Figure 10 show a comparison of the normalized distance from the pylon for 
both the constant TAS and variable TAS methods (i.e. constant pivotal altitude), for 
values of WV =0.1, 0.2, and 0.3. Here we have assumed a value of 

0T
V =90 Kts. Note that 

in the constant pivotal altitude case, the normalized distance from the pylon betweenT
equals 90 and 270 degrees has decreased. Since the distance from the pylon has 
decreased in this range ofT , one would expect the corresponding normalized turn rate 
and bank angle to be increased in the constant pivotal altitude method. However, 
Figures 11 and 12 show significant changes in the turn rate ratio and bank angle ratio 
over a large portion of the On-Pylon Turn. This is due to the increase in the TAS as the 
aircraft moves from the downwind to the upwind, and then the corresponding decrease 
in airspeed as the aircraft moves from the upwind back to the downwind. However, the 
bank angle during the On-Pylon Turn will always be bounded by the bank angle on the 
downwind. Thus, the method of varying the TAS to hold the pylon appears to be viable 
as an alternative method to that shown in the latest FAA Airplane Flying Handbook (Ref. 
3). 

In Section 6, we will discuss flying the On-Pylon Turn, including what visual cues 
the Pilot will observe when he/she is above or below the pivotal altitude, and techniques 
used to recapture the pylon. 
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Figure 10: Comparison of Normalized Distance from Pylon 

0

r
r

 versus T   

 ( WV =0.1, 0.2, and 0.3) 

 

 

   Figure 11: Comparison of Normalized Turn Rate versus T  ( WV =0.1, 0.2, and 0.3) 
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      Figure 12: Comparison of Bank Angle Ratio versus T  ( WV =0.1, 0.2, and 0.3) 

 

 

 

6.0 Flying the On-Pylon Turn 
 Prior to flying the on-pylon turn, the Pilot/Instructor should prepare for the 
execution of the maneuver by determining the VTAS and distance from the pylon on the 
downwind (r0), that will be used based on the current wind conditions, in order that the 
aircraft will be able to perform the required rate of climb for the maneuver. Equations 
(59) and (71) can be used to determine these parameters. In addition, if the maneuver 
will be performed at higher elevations above MSL, the Pilot must insure that he/she is 
using TAS and not IAS,. The Pilot/Instructor should also determine the pivotal altitudes 
for the four points around the pylon shown in Table 4. Since pivotal altitude is relative to 
the surface, it should be added to the elevation of the surface, so as to obtain the 
indicated altitude of the aircraft at those points. 
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                Table 4: Ratio of 
NW

h
h

 as a Function the T   

T (degrees) 

NW

h
h

  

0 (1 )WV�   
90 1 

180 (1 )WV�   
270 1 

 

Again, the pivotal altitude in the no wind case is given by eq.(25), i.e.
2

TAS
NW

Vh
g

 . With 

this information available, it is anticipated that the Pilot/Instructor will be able to stay 
ahead of the aircraft during the execution of this maneuver. 

 We will now shift our attention to developing a technique for determining whether 
the aircraft is above or below the pivotal altitude. In order to facilitate this discussion we 
will consider the no wind case, i.e. 0WV  . Once the no wind case is understood, the 

technique can easily be carried over to the case where 0WV z . 

 

6.1 No Wind Case  

 In Section 3 we derived the track of the aircraft during the On-Pylon Turn 
maneuver. It was shown that the shape of the track is that of an ellipse with the 
eccentricity given by the parameter WV . In the no wind case, the track of the aircraft 
becomes that of a circle of constant radius. Thus, the On-Pylon Turn is also a Turn 
around a Point, with the point being the pylon. As shown earlier, there are an infinite 
number of solutions to the On-Pylon Turn maneuver, corresponding to different 

radii/bank angles, with the radius and bank angle related by eq.(56), i.e.
2

0

Tan TAS
NW

V
gr

I  . 

If the Pilot enters the On-Pylon Turn at a selected value of r0, and then rolls into a bank 
angle given by eq.(56), the aircraft will execute a perfect Turn around a Point. Unless 
the aircraft is at the pivotal altitude, the reference line will not appear to pivot on the 
pylon. Figure 13 shown below, taken from the latest Airplane Flying Handbook (FAA-H-
8083-3B, 2016), attempts to convey the message that if the aircraft is below the pivotal 
altitude, the projection of the reference line onto the surface will scribe a circle in the 
forward direction. If the aircraft is above the pivotal altitude, the projection of the 
reference line onto the surface will scribe out a circle in the reverse direction.  
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Figure 13: Projection of Reference Line on Surface for Aircraft Maintaining a         
Constant Bank Angle and Radius 

 

For those not able to grasp the above explanation, a more physical explanation is 
shown below in Figure 14.  
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                    Figure 14: Visual Cues for Determining Correct Pivotal Altitude 

 

In this explanation, no matter what altitude the aircraft is flying, if one places an 
imaginary pylon at a distance h=hnw below the aircraft, the reference line will always 
appear to pivot on the imaginary pylon. Let’s assume that the actual pylon is located at 
the point P’, and the imaginary pylon is located at the point P. Consider Figure 14A, 
where the aircraft is flying at an altitude corresponding to the pivotal altitude. In this 
case the points P and P’ are identical, and the reference line will appear to pivot on the 
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pylon. In Figure 14B, the aircraft is flying at a height h’, which is below the pivotal 
altitude. We see that the reference line appears to pivot on P, while the projection of the 
aircraft track onto the surface appears to move forward in a circle. Note that the points 1 
and 2 project to points 1’ and 2’ respectively. Figure 14C depicts the case when the 
aircraft is above the pivotal altitude. Note that in this case the circular cone is reflected 
below the surface, with the apex being the point P. Again, points 1 and 2 project to 
points 1’ and 2’ respectively. In this case, the projection of the reference line on the 
surface appears to move backwards. 

In the general scenario, if the aircraft is not at the pivotal altitude, the bank angle 
that initially places the reference line on the pylon will not correspond to the radius of 
the turn at the pivotal altitude. In Figure 15, we show the conic surface representing a 
particular bank angle.  

 

Figure 15: Aircraft Initiating the On-Pylon Turn from Three Different Altitudes 

(Plane A at Pivotal Altitude, Plane B above Pivotal Altitude, and Plane C below 
Pivotal Altitude) 

 

Here we see that if the aircraft has initiated the On-Pylon Turn on plane A at point 1A, 
the reference line will appear to pivot on the pylon, i.e. point P. If the aircraft has 
initiated it turn on plane B at point 1B (i.e. above the pivotal altitude), the aircraft will be 
flying the same radius as on plane A, since the bank angle would be the same. This 
causes the center of the turn to move closer to the aircraft on Plane B, i.e. P’B. Figure 

        P 
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16 shows the resultant movement of the reference line relative to the pylon (P). We see 
that as the aircraft moves from position 1 to 2, 3, and 4, the reference line is moving 
rearward relative to the pylon located a point P, i.e. points 1’, 2’, 3’, and 4’. This is the 
indication that the aircraft is above the pivotal altitude and needs to descend and move 
to a smaller radius. As the altitude is reduced, the reference line will start to reverse 
direction and move toward the pylon. When the aircraft finally reaches the pivotal 
altitude, the reference line will have caught up to the pylon. However, the bank angle 
will no longer correspond to the initial bank angle at point 1A, it will have changed in 
order to keep the elevation of the reference line on the pylon. Note that if the initial bank 
angle is kept constant during the descent to the pivotal altitude, the aircraft will appear 
to pivot on the point which is the projection of P’B onto the surface, rather than the point 
P. Thus to maintain the original pylon at point P, the aircraft bank will be varying slightly 
during the descent to the pivotal altitude.  
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Figure 16: Reference Line Movement Relative to Pylon when Aircraft is   
Above the Pivotal Altitude (Looking Down on Pylon at Point PB) 

 

If the aircraft is below the pivotal altitude when the reference line is placed on the 
pylon (i.e. point 1C), the radius of the turn for the initial bank angle is larger than the 
radius at point 1C. Thus, the aircraft starts to turn away from the pylon. The motion of 
the reference line relative to the pylon is shown in Figure 17. Here, the center of the turn 
is now located at P’C, and thus, as the aircraft moves from point 1 to 2, 3, and 4, the 
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reference line is moving forward relative to the pylon (point P), i.e. points 1’, 2’,3’ and 4’. 
This is the indication that the aircraft is below the pivotal altitude and needs to ascend 
and move to a larger radius. As the aircraft climbs, the reference line will stop moving 
forward relative to the pylon and start to move backward until the pylon catches up to 
the reference line at the pivotal altitude. Again, the bank angle will need to vary in order 
to keep the elevation of the reference line on the pylon. 

 

Figure 17: Reference Line Movement Relative to Pylon when Aircraft is 
Below the Pivotal Altitude (Looking Down on Pylon at Point PC) 

 

Summarizing the visual cues for determination of whether the aircraft altitude is 
above or below the pivotal altitude: 

(1) If the reference line is moving forward relative to the pylon, or the 
reference line is moving in a circular motion in the direction of the turn, 
the aircraft is below the pivotal altitude and needs to ascend. 

(2) If the reference line is moving backward relative to the pylon, or the 
reference line is moving in a circular motion in the direction opposite to 
the direction of the turn, the aircraft is above the pivotal altitude and 
needs to descend. 
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6.1.1 Planning the On-Pylon Turn with No Wind 

 
 When flying the On-Pylon Turn without a wind, it is important for the 
Pilot/Instructor to remember that there are an infinite number of solutions to the On-
Pylon Turn maneuver, each one corresponding to a particular radius and corresponding 
bank angle. If the Pilot chooses a distance from the pylon to execute the maneuver, 
there will be a corresponding bank angle that will hold that distance. Equation (56) can 
be used to determine the required bank angle for a given radius. Table 5 shows the 
required bank angle in degrees to hold the given radius around the pylon. We also show 
the pivotal altitude at the bottom of the Table. Note that the numerical value of the bank 
angle has been rounded to the nearest degree. Here the VTAS is in knots. 

 

          Table 5: Bank Angle (Degrees) 
Radius 
(feet) 

VTAS=80 VTAS=90 VTAS=100 VTAS=110 VTAS=120 

500 49 55 61 65 69 
1000 30 36 42 47 52 
1500 21 26 31 36 40 
2000 16 20 24 28 33 
2500 13 16 20 23 27 
3000 11 13 16 20 23 

      
Pivotal 

Altitude(feet) 
566 717 885 1071 1275 

  

Table 5 is extremely useful for the Pilot, since he/she can pick a particular radius 
and corresponding bank angle to set up the On-Pylon Turn. As discussed earlier, the 
On-Pylon Turn maneuver without a wind is also a Turn around a Point. Once the 
approximate radius is selected, the Pilot need only keep the elevation of the reference 
line on the pylon and the bank angle constant. The visual cues discussed in Section 5.1 
can then be utilized to determine whether the aircraft is above or below the pivotal 
altitude. The Pilot should practice this maneuver with the initial altitude both above and 
below the pivotal altitude in order to confirm their understanding of the visual cues 
needed to converge on the pivotal altitude. The Pilot should also know the pivotal 
altitude prior to executing this maneuver. Under the no wind scenario, the pivotal 
altitude that the Pilot converges on for the On-Pylon Turn should be close to the value 
given in Table 5. 

 In Section 6.2 we discuss the On-Pylon Turn maneuver in the presence of a 
wind.  
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6.2 Flying the On-Pylon Turn Maneuver in the Presence of a Wind 
 The On-Pylon Turn maneuver in the presence of a wind is flown somewhat 
different than the On-Pylon Turn without a wind. In the presence of a wind, the pivotal 
altitude will be continually changing around the pylon. Thus, for a given windspeed ratio, 
the Pilot should know the pivotal altitudes for at least the four location shown in the 
previous Tables. These areT =0, 90,180, and 270 degrees. Equations (33) or (34) in 
conjunction with Table 4 provide this information. 

 As shown previously, the maximum bank angle around the pylon will occur on 
the downwind. If the Pilot is interested in keeping the maximum bank angle below a 
specific value (i.e. 45 degrees), eq. (59) can be utilized to determine the radius on the 
downwind that will keep the maximum bank angle at this specific value. 

 The required maximum rate of climb in order to hold the pylon can be 
approximated by eq. (71). Here again, we see that the maximum required rate of climb 
is proportional to VTAS and the tangent of the maximum bank angle on the downwind. 
Thus, if the given wind conditions require a higher rate of climb than the aircraft is 
capable of delivering, the maximum required rate of climb can be reduced by 
decreasing either VTAS or the maximum bank angle on the downwind, or a combination 
of the two. We should also point out that when the VTAS is reduced, the value of the 
windspeed ratio will increase slightly, so one needs to recalculate the windspeed ratio 
and then use eq. (71) to recalculate the maximum required rate of climb. It is important 
for all Pilots to understand that under strong wind conditions, a combination of both a 
reduction in VTAS and bank angle on the downwind may be the only way that the 
aircraft’s rate of climb can meet the required maximum rate of climb when holding the 
pylon. 

 We should point out that in the presence of a wind, the Pilot should enter the 
On-Pylon Turn on the downwind with the estimated planned distance from the pylon 
(i.e., controlling the maximum bank angle). The same procedures as discussed in the 
no-wind case should be used to hold the pylon. The altitude should be adjusted to move 
the line of sight of the lateral axis to the pylon and the bank angle adjusted to keep the 
elevation of the line of sight of the lateral axis on the pylon. The only difference between 
the no wind and wind case is the geometry of the conic surface will change from a 
circular conic to an elliptic conic.  

 It is also important for all Pilots to understand that there are an infinite number of 
solutions to the On-Pylon Turn maneuver, each having a different radius and 
corresponding bank angle on the downwind. Thus, if the Pilot loses the pylon and then 
recovers it shortly afterward, he/she may find the aircraft at a different distance from the 
pylon when returning back to the downwind. Note, there is no mention in Ref. 3 about 
maintaining the same distance from the pylon after multiple circuits. Finally, as 
described in Section 6, a precision On-Pylon Turn maneuver in the presence of a wind 
could also be flown using a constant pivotal altitude while varying the TAS. 
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7.0 Conclusions 
 In this White Paper we have derived the complete solution to the On-Pylon Turn 
maneuver. The solution provides the pivotal altitude, bank angle, rate of turn, rate of 
climb/descent, and WCA, which will hold the pylon under an arbitrary windspeed ratio, 

i.e. W
W

TAS

VV
V

 . The solution shows the pivotal altitude given in the FAA Airplane Flying 

Handbooks (Refs. 2 and 3) are in error when used in the presence of a wind. We show 
that the error is an outcome of an incorrect assumption for the Centripetal acceleration 
used to calculate the pivotal altitude. This error arises when the radius of the turn is not 
constant during the maneuver, as is the case in the On-Pylon Turn maneuver. In 
addition, the solution shows that the groundspeed that is utilized in determining the 
pivotal altitude is the transverse component of the groundspeed, i.e., it does not include 
the radial component of the windspeed. This is also shown to be incorrect in Refs 2 and 
3. 

 Simple formulas are derived to allow the Pilot to setup the On-Pylon Turn so as 
to employ a specified maximum bank angle during the maneuver. We show that the 
maximum bank angle occurs on the downwind when the aircraft is closest to the pylon, 
while the minimum bank angle occurs on the upwind when the aircraft is farthest from 
the pylon. The percent change in pivotal altitude from the downwind to the upwind is 
shown to be equal to 0.2 WV , and thus is proportional to the windspeed ratio. At high 
windspeed ratios, i.e. 0.2t  , with the aircraft flown at 90 KTAS, the required maximum 
rate of climb of the aircraft to hold the pylon can exceed the aircraft performance 
capability of a C-172. We have derived a formula for the required rate of climb/descent 
to hold the pylon. This formula allows the Pilot to determine the necessary reduction in 
VTAS or bank angle on the downwind, in order to reduce the required maximum rate of 
climb such that the required aircraft performance is consistent with the aircraft 
capabilities. In addition, we have also shown that the On-Pylon Turn in the presence of 
a wind can be flown at constant pivotal altitude by varying the TAS around the pylon. If 
the On-Pylon Turn is entered on the downwind, the only difference between the 
constant TAS and varying TAS methods is that in the case of the varying TAS method, 
the aircraft remains closer to the pylon in the region T =90 to 270 degrees, and exhibits 
larger turn rates and bank angles around the pylon. However, the required bank angles 
around the pylon are always less than that required on the downwind.  

 We have also derived the physical explanation for the visual cues that the Pilot 
observes when the aircraft is above or below the pivotal altitude, and the necessary 
corrections to move the reference line back onto the pylon. Finally, we have provided 
some helpful information on setting up and flying a precision On-Pylon Turn maneuver.  
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