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Summary 

 As a requirement in the certification for the Private Pilot Certificate, the Candidate 

must be proficient in the execution of three Ground Reference maneuvers. These are: 

(a) Rectangular Course, (b) S-Turns Across a Road, and (c) Turns Around a Point. All 

three maneuvers depend on understanding how wind affects the ground track of the 

aircraft.  

 In most texts on performing ground reference maneuvers, the subject of Tracking 

a Road, is treated fairly well. However, when it comes to the Turn Around a Point, the 

discussion is not very detailed. As an example, the FAA “Flight Training Handbook” 

indicates that the maximum bank angle will occur when the aircraft is on the downwind 

and the minimum bank angle will occur when the aircraft is on the headwind. In addition, 

the Handbook states, “Thus, if a maximum bank angle of 45 degrees is desired, the 

initial bank will be 45 degrees, if the aircraft is at the correct distance from the point. 

Thereafter, the bank is shallowed gradually until the point is reached where the aircraft 

is headed directly upwind. At this point the bank should be gradually steepened until the 

steepest bank is again attained when heading downwind at the initial point of entry.” 

Thus, it is left to the Pilot as to what is mean by gradually changing the bank angle and 

what should be the radius of the turn that allows the maximum bank angle to be no 

more than 45 degrees on the downwind.  

 In order to answer these questions and provide the Flight Instructor and the Pilot 

with the very information he/she needs to fly the Turn Around a Point maneuver with 

precision, we derive the exact solution to the Turn Around a Point maneuver The exact 

solution provides the following information to the Pilot: (1) Rate of turn, (2) Bank angle, 

(3) Wind correction angle, and (4) Groundspeed ratio (i.e., the ratio of the groundspeed 

to the TAS), as a function of the angular position of the aircraft around the circle. We 

show that the solution is dependent on a single parameter, the wind speed ratio (i.e., 

VWind /VTAS), with the rate of turn around the circle proportional to the square of the 

groundspeed ratio (i.e., VG /VTAS).  

However, what is most intriguing is the solution also provides a crucial piece of 

information to the Pilot, which is the “gradient bank angle”. The “gradient bank angle” is 

the number of degrees the bank angle must change per degree of angular displacement 

around the circle, as a function of where the aircraft is relative to the tailwind position. 

The “gradient bank angle” is found to be proportional to the wind speed ratio.  The 

resultant behavior of the variation of the “gradient bank angle” is one of the root causes 

of why Pilots have trouble flying the maneuver with a wind of 10 knots or more.  



If we follow the aircraft around the circle starting at the point when the aircraft is 

on the tailwind, the change in bank angle is zero, i.e. the bank is being held constant at 

its maximum value as we pass the downwind point. As we move toward the downwind 

side, the bank angle is being decreased; however, the rate at which the bank angle is 

decreased is increasing and reaches a maximum near the crosswind point (on the 

downwind side). For winds speed ratios of 0.3 or less, this maximum value of the 

“gradient bank angle” is less than 3 degrees per every 10 degrees of angular movement 

around the circle. During the time the aircraft is progressing from the crosswind point to 

the headwind point, the bank angle is continuing to decrease; however, the rate of 

change is also decreasing, until at the headwind point, the bank angle is being held 

constant at its minimum value. As the aircraft progresses from the headwind point to the 

opposite crosswind point (i.e. upwind side), the bank angle is increasing, with the rate 

increasing until it reaches a maximum in the neighborhood of the crosswind point. 

Again, this maximum in “gradient bank angle” is less than 3 degrees per every 10 

degrees of angular movement around the circle. As the aircraft passes the crosswind 

point, the bank angle continues to increase with the rate of change decreasing until the 

bank angle is at maximum again on the tailwind, at which time, the bank angle is being 

held constant at its maximum value for a short period of time. This process than repeats 

itself. 

Since the “gradient bank angle” is the key to the precise execution of the Turn 

Around a Point, we show that the “gradient groundspeed” parameter, which is the rate 

of change in the groundspeed around the circle, closely replicates the “gradient bank 

angle” parameter, and thus can be used as a guide in how to adjust the rate of change 

of the bank angle around the circle. In addition, we show that there are two primary 

variables the Pilot needs to observe around the circle. These are the radius of the turn 

and the groundspeed. The wind correction angle is shown not to be a primary variable 

since if the radius is correct, the wind correction angle must also be correct.  

It is important to understand that these bank angle changes for wind speed ratios 

less than or equal to 0.3 are less than 3 degrees for every 10 degrees around the circle, 

and thus the term “gradually” is now quantified. In addition, the exact solution of the 

Turn Around a Point has been used to determine the radius of the turn which will ensure 

that the maximum bank angle is never greater than 45 degrees at the downwind point.  

Using the information in this White Paper will allow both the Flight Instructor and 

Pilot not only to be able to fly a more precise Turn Around a Point, but have a better 

understanding of what is taking place during the execution of the maneuver. 

 

 



 

1.0 Introduction 

 

Ground reference maneuvers are maneuvers for both Private Pilot and 

Commercial Pilot Certificates. In the case of the Private Pilot Certificate, the pilot must 

satisfactorily demonstrate (a) Rectangular Course, (b) S-Turns Across a Road, and (c) 

Turns Around a Point. In the case of the Commercial Pilot certificate, the pilot must 

satisfactorily demonstrate Eights-On-Pylons. In this White Paper we concentrate on 

understanding and flying the Turn Around a Point. In a future White Paper, we will 

concentrate on understanding and flying the On-Pylon Turn. 

As Flight Instructors, we attempt to break a maneuver down into basic elements 

which we can build on as we move from one maneuver to the next. If we look at the 

Rectangular Course, it is clear that this maneuver contains four straight legs and four 90 

degree turns. In the case of S-Turns Across a Road, the maneuver is composed of two 

half circles of equal radius, in the first half the aircraft is turning in one direction and then 

in the second half it is turning in the opposite direction. Finally, in the case of a Turn 

Around a Point, the maneuver requires the pilot to maintain a constant radius around a 

specific point on the ground. It would appear that these maneuvers can be broken down 

into two basic elements, (a) Tracking a Road, and (b) Turns Around a Point. However, 

as we will see shortly, all the maneuvers for the Private Pilot Certificate are based on 

only one basic element and that is Tracking a Road. Thus, in order for the Student Pilot 

to comprehend and satisfactorily demonstrate the required ground reference 

maneuvers, the Student must understand wind drift and wind drift corrections, and thus 

the concept of the “Wind Triangle”. Understanding the “Wind Triangle Problem” allows 

the Student Pilot to understand the important parameters that affect the ground track of 

the aircraft in the presence of a wind. 

In Section 2.0 we review the solution of the “Wind Triangle Problem”, which will 

provide us with the important parameters that affect the ground track in the presence of 

a wind. In Section 3.0 we discuss the simple concept of the “Dynamics of a Turn”, and 

the relationship between TAS, bank angle, and turn radius. In addition, we show how 

the rate of turn relates to bank angle and TAS. In Section 4 we discuss how wind affects 

the ground track during turning flight. In Section 5 we show how to relate the solution of 

the “Wind Triangle Problem” to the “Turn Around a Point”, which allows us to obtain the 

exact solution to the Turn Around a Point maneuver. In Section 6 we discuss how to 

precisely fly the “Turn Around A Point” maneuver and the primary visual cues that the 

Pilot should be focused on during the maneuver. Finally, in Section 7 we discuss how to 

select the proper radius of the turn to ensure that the bank angle on the tailwind never 



exceeds 45 degrees, as well as procedures for allowing the Pilot to enter the maneuver 

at points other than on the tailwind. In Section 8 we summarize the main points of this 

White Paper. 

2.0 The Exact Solution of the “Wind Triangle Problem” 

When a Pilot is attempting to fly over a straight road while correcting for wind 

drift, he/she is seeking a wind correction angle which will allow the aircraft to track 

directly over the road. Figure 1, taken from the FAA-H-8083-3A (“Airplane Flying 

Handbook”), shows the effect of wind drift on the aircraft attempting to track over a road. 

As can be seen, in order to track directly over the road the aircraft must establish a wind 

correction angle (WCA) into the wind. 

 

 

 

 As a Student Pilot, we have been instructed in the use of either an E6B Wheel or 

an Electronic E6B Flight Computer to determine the WCA and the groundspeed along 

the course we are trying to track. The solution of the “Wind Triangle Problem” requires 

the Pilot to input the following four quantities: (a) Course to track, (b) True airspeed, (c) 

Wind direction, and (d) Wind speed. The course and wind direction can be input in 

either True or Magnetic, but both wind direction and course must be use the same 

reference. The solution of the “Wind Triangle Problem” provides the WCA and the 

groundspeed along the course to be tracked. The problem with the E6B is that it does 

not provide any information on what the important parameters are that control the WCA 

and the groundspeed.  In order to obtain this information it is necessary to determine 

the exact solution of the “Wind Triangle Problem”. 

 Figure 2 shows the basic “Wind Triangle” concept. Given the wind speed, VWind, 

the angle between the wind direction and the course line to be tracked,  and the true 

airspeed, VTAS, we need to determine the WCA,  and the groundspeed, VG. Note that 

Figure 1 – Effects of Wind Drift on Tracking a Road 



we do not require the individual values of the course to be tracked and the wind 

direction, but only the relative angle between the course and the wind direction, i.e., . 

 

 

 

 

 

 The solution to the “Wind Triangle Problem” is based on a simple concept in 

elementary trigonometry, called the “Law of Sine’s”. The “Law of Sine’s” can be derived 

using Figure 3 shown below. Since every triangle contains 3 angles which must sum to 

180 degrees, we can write the following equation for the sum of the angles 

 180      (1)a b c           

The length of the 3 sides are designated as A, B, and C. If we drop a perpendicular line 

from the vertex between A and B, the height, h, can be expressed 

                                                               

( )

( )

             (2)

             (3)

h
Sin c

A

h
Sin a

B





 

 

Figure 2- Basic Wind Triangle Concept 



                              

 

 

Thus, equating the two expressions for h, we obtain the following simple relationship 

                                                  
( ) ( )

         (4)
A B

Sin a Sin b
  

If one drops another perpendicular line from a different vertex, i.e. between A and C, 

one obtains a similar relationship between A and C, i.e. 

 
( ) ( )

        (5)
A C

Sin a Sin c
   

 

Comparing (4) and (5) we see that  

 
( ) ( ) ( )

       (6)
A B C

Sin a Sin b Sin c
    

Equation (6) is the fundamental relationship for the “Law of Sine’s”. Using (6) one can 

now obtain the solution of the “Wind Triangle Problem”. 

          

Figure 3:  Concept of the “Law of Sine’s” 



 

If we let  

 
            (7)
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Equation (6) becomes 

 
( ) ( ) ( )

         (8)Wind TAS G
V V V

Sin Sin Sin  
    

 

By equating the first two terms in (8) we obtain a simple relationship for the WCA, , 

i.e., 

 ( ) ( ) ( )         (9)Wind

TAS

V
Sin Sin

V
    

By equating the second and third terms, we obtain a relationship for the ratio of the 

groundspeed to the true airspeed, i.e.  

 
( )

( )
         (10)G

TAS

V Sin

V Sin




   

Equation (10) contains the variable , which is not one of the variables that the 

Pilot specifically inputs. Thus we need to express  in terms of  and . 
Using (1) we see that  

 180         (11)       



Therefore,  

 ( ) (180 )         (12)Sin Sin       

 

In order to simplify (12), we use the trigonometric relationship for the sum and difference 

of angles, i.e.  

 (180 ) (180) ( ) Sin( )Cos(180)         (13)Sin Sin Cos             

Since the Sin(180)=0, and the Cos(180)=-1, (13) becomes 

 ( ) ( )        (14)Sin Sin      

Finally, using the trigonometric relationship for the Sine of the sum of two angles, we 

see that 

 ( ) ( ) ( ) ( ) ( )          (15)Sin Sin Cos Sin Cos          

Thus, (10) can be written as  

 
( ) ( ) ( ) ( )

( )
           (16)G

TAS

V Sin Cos Sin Cos

V Sin

   




   

 

If we substitute (9) for theSin , we obtain the final equation for the ratio of the 

groundspeed to the true airspeed, i.e. 

 

 ( ) ( ) ( )        (17)G Wind

TAS TAS

V V
Cos Cos

V V
     

Equations (9) and (17) are the exact solution of the “Wind Triangle Problem”. The 

parameters that control the WCA and the groundspeed are: (1) the ratio of the wind 

speed to the true airspeed (VWind/VTAS), and (2) The angle between the wind direction 

and the course to be flown (). Equation (17) carries an extremely important piece of 

information that every Pilot should understand. When the angle between the wind 

direction and the course to be flown is 90 degrees, the Cos(90) is zero and so the 



groundspeed is given by ( )G

TAS

V
Cos

V
 . Thus, even when the wind is 90 degrees to 

the course to be flown, the groundspeed will always be less than the true airspeed, 

since the WCA will always be greater than zero, and the Cos  will always be less than 

unity. Here, in this case (9) becomes  

 ( )          (18)Wind

TAS

V
Sin

V
    

Therefore, when the wind is blowing 90 degrees to the course to be flown, the WCA is 

given by the inverse Sine of the wind speed ratio. Note that when the wind speed ratio 

is less than a half, a good approximation for the WCA in degrees is given by  

 60( )         (19)Wind

TAS

V
WCA

V
   

Thus, when the wind speed ratio is 0.1, the WCA would be approximately 6 degrees. In 

addition, when the wind direction is less than 90 degrees to the course to be flown, the 

WCA will always be bounded by (19), i.e. the WCA will always be less than the value 

predicted by (19). We now summarize the final two equations for the solution of the 

“Wind Triangle Problem”.  

 

( ) ( ) ( )

( ) ( ) ( )           (20)

Wind

TAS

G Wind

TAS TAS

V
Sin Sin

V

V V
Cos Cos

V V

 

 



 

  

 

 

 It is important that we verify that (20) is the correct solution of the “Wind Triangle 

Problem”, by comparing the result of (20) with the solution one obtains with an 

Electronic E6B. We consider the following problem: 

Magnetic course=360 degrees 

True Airspeed=100 knots 

Magnetic wind direction= 210 degrees  



Wind speed=20 knots 

Determine the WCA and groundspeed. 

Since the wind speed ratio is 20/100=0.2, and the angle between the magnetic 

course and the magnetic wind direction,  is 30 degrees, the first expression in (20) 

provides the following  

 ( ) 0.2 (30)Sin Sin    

Since the Sin(30) is 0.5, we see that 0.1Sin  , and thus the value of =5.739 

degrees. The second expression in (20) requires the Cos(). Using the trigonometric 

relationship 

 
2 2( ) ( ) 1        (21)Sin Cos     

We see that Cos= 0.995. Therefore, the groundspeed is computed to be 

VG=100[0.995+0.2Cos(30)].  Since the Cos(30) is 0.866, the groundspeed is computed 

to be 116.8 knots. Using the Electronic E6B Computer, we obtain the following solution 

for the WCA and the groundspeed. 

 
6

117

 degs

 Kts
G

V

 


  

Note that the E6B rounds off the WCA and the groundspeed, whereas the equations in 

(20) provide the exact unrounded results.  

 One can also consider the two limiting cases of a headwind and a tailwind. In the 

case of a tailwind, =0 degrees, the Sin(0)=0 and the Cos(0)=1. Thus, the WCA, =0, 

and the groundspeed is just equal to the true airspeed plus the wind speed. In the 

headwind case, =180 degrees, the Sin(180)=0 and Cos(180)=-1. Thus, the WCA, 

=0, and the groundspeed is just equal to the true airspeed minus the wind speed. 

 The important results shown in (20) will become extremely useful in discussing 

Turns Around a Point, which is described in Sections 4-7. Here we again show that the 

key parameters that affect the Pilot’s ability in maintaining the constant radius during the 

maneuver is the wind speed ratio and the angular position of the aircraft relative to the 

tailwind. 

 In Section 3 we discuss the dynamics of the turn and the fundamental 

relationships between TAS, bank angle, rate of turn, and turn radius. 



 

3.0 Dynamics of the Turn 

In order to fully understand the Turn Around a Point, it is necessary for every 

Flight Instructor and Pilot to understand the basic concept of the dynamics of a turn. 

The dynamics of the turn can be determined from Newton’s “Second Law of Motion”, i.e. 

the mass of the body times the acceleration of the body is equal to the sum of all the 

external forces acting on the body. In the case of an airplane, the external forces are the 

aerodynamic forces. If all the external forces sum to zero, the aircraft is considered to 

be in a steady state without any acceleration. Note that acceleration of the body can 

arise from a rate of change in speed or direction. 

When a body is travelling at a constant true airspeed in a circle of constant 

radius, the body has an inward radial acceleration called centripetal acceleration. This 

acceleration can be shown to be equal to the square of the true airspeed divided by the 

radius of the turn. The centripetal acceleration is due to the component of lift acting 

inward toward the center of the turn. If we denote inward forces and accelerations as 

negative and outward forces and accelerations as positive, then Newton’s “Second Law 

of Motion” is just  

       

2

( )           (21)
V

m LSin
r

     

Here  

 m= mass of the body 

 V=True airspeed 

 r= Radius of turn 

 L=Lift on the aircraft 

 = Bank angle 

 

 It is clear from (21) that as long as the lift, bank angle and true airspeed are 

constant, the centripetal acceleration is constant. If we transpose the centripetal 

acceleration to the right hand side of (21), the equation now becomes 

 

2

0 ( )           (22)
V

LSin m
r

     



In this form, it appears that the aircraft is undergoing zero acceleration, i.e., the left hand 

side of (22) is identically zero, with the right hand side involving two forces in balance. 

The two forces on the right hand side of (22) are the inward component of lift and an 

outward force,

2V
m

r
 which we will call the “centrifugal force”. Note that this so-called 

“centrifugal force” is not a physical force, but an apparent force that comes about by 

rewriting (21) as (22). Figure 4, taken from the Handbook of Aeronautical Knowledge, 

FAA-H-8083-25A shows these forces on the aircraft during a coordinated turn. 

 

            

 

If we balance the forces in the horizontal and vertical directions, we obtain the 

following two simple equations: 

Horizontal:     

2

( )           (23)
V

LSin m
r

 
    

Vertical:        ( )             (24)LCos W         

Figure 4: Forces on the Aircraft in a Coordinated Turn 

Bank Angle  

L Cos() 

L Sin () 



 

Dividing (23) by (24), we obtain the equation 

 

2

( )              (25)
m V

Tan
W r

    

Since the mass of the aircraft is just equal to the weight of the aircraft divided by 

gravity, i.e., m=W/g, (25) becomes 

 

 

2

( )              (26)
V

Tan
gr

    

   

Equation (26) is the fundamental equation for the relationship between the bank angle, 

true airspeed and turn radius in a coordinated turn. Note that since the direction of the 

flight of the aircraft is always tangent to the circle, the rate of turn of the aircraft is given 

by the tangential speed divided by the radius of the turn, i.e.   

               (27)
V

ROT
r

    

Equations (26) and (27) are the equations that describe the dynamics of a coordinated 

turn. However, if we solve for the radius from (26) and substitute it into (27), we obtain 

the following equation for the rate of turn: 

 
( )

            (28)
gTan

ROT
V


    

Equation (28) shows that when the aircraft is travelling at a constant true airspeed in the 

turn, the ROT only depends on the bank angle . This important fact will carry over into 

the discussion of a Turn Around a Point. 

 When flying a Turn Around a Point, (26) tells us that the pilot has control over two 

of the three variables. Once two of the variables are specified, the third is automatically 

determined. As an example, let us consider an aircraft flying at various true airspeeds 

and bank angles, and determine what the turn radius would be for any pair of these 

variables. In order to determine these values, it is necessary to convert the TAS in knots 

to ft/sec (i.e., multiply by 1.688). In addition, the value of g is 32.17 ft/sec2. 



 

 

 

KTAS 30 45 60 

80 981 566 327 

90 1242 717 414 

100 1533 885 511 

110 1855 1071 618 

 

In Table 2 below, we have also tabulated the ROT in degrees/sec as a function of the 

true airspeed and the banks angle. Since in (28) the ROT is in radians/sec, it is 

necessary to multiply the result in (28) by 180/, where the value of  is 3.14159. 

 

 

 

 

KTAS 30 45 60 

80 7.9 13.6 23.6 

90 7.0 12.1 21.0 

100 6.3 10.9 18.9 

110 5.7 9.9 17.2 

 

 

The information provided in Table 1 and 2 will be very useful in our discussion of the 

Turn Around a Point. 

 In Section 4 we discuss the effect of the wind on the ground track during a Turn 

Around a Point. 

                                     

4.0 Effect of Wind on the Turn Around a Point 

When an aircraft performs a Turn Around a Point without a wind, the 

aircraft will have a direction of flight at all times that is tangent to the circle. 

Equation (26) provides the radius of the turn for a given true airspeed and bank 

Bank Angle (degrees) 

Table I: Turn Radius (feet) Versus KTAS/Bank Angle 

Bank Angle (degrees) 

Table 2: ROT (degrees/sec) versus KTAS/Bank 

Angle 



angle. In addition, there will be a corresponding rate of turn for these conditions, 

as shown in (27). When we attempt this maneuver in the presence of a wind, the 

track of the aircraft relative to the center of the circle on the ground will not be a 

circle. In order to understand this phenomenon, it is necessary to determine the 

aircraft groundspeed as a function of position around the circle. Figure 5 shows 

the required circle that the aircraft is attempting to track. Here we have set up an 

X-Y coordinate system with the center of the circle being the point (0,0).The 

location of the center of gravity of the aircraft along the circle is given by the 

angle   measured counterclockwise from the X-axis.  

 

 

 

 
 

 

 

 

We have normalized the X and Y coordinates by the radius of the circle, R. The X/R and 

Y/R values are given as a function of . Table 3 shows these coordinates corresponding 

to four points on the circle, i.e. =0, 90,180 and 270 degrees. 

Figure 5: Coordinate System for the Turn Around a Point 

VTAS 



 

 

 

 (degrees) X/R Y/R 

0 1 0 

90 0 1 

180 -1 0 

270 0 -1 

 

One can express the aircraft relative heading H, i.e., the heading relative to the 

X-axis by the expression  

                                   90               (29)
H

    

Thus, when =0, the aircraft is flying in the +Y direction. Since we can orient the wind in 

any direction we choose, we will allow the wind to blow from the –Y direction toward the 

+Y direction. Figure 5 shows the orientation of the wind relative to the Coordinate 

System set up. Thus, at =0, the aircraft is on a tailwind; at =90, the aircraft is on a 

crosswind (i.e., the downwind side), at =180, the aircraft on a headwind, and at =270, 

the aircraft is on the opposite crosswind (i.e., the upwind side). 

                                

Table 3: X/R-Y/R Coordinates of the Circle 

VWind 

 

Figure 6: Wind Orientation  

VTAS 



 

We now decompose the groundspeed into X and Y components. 

  

                     

( )

( )                 (30)

X

Y

G TAS

G TAS Wind

V V Sin

V V Cos V





 

 
  

 

In order for us to develop the key parameters that control the wind effect on the Turn 

Around A Point, we divide both sides of (30) by VTAS. Equation (30) can now be written 

as  

 
( )

( )               (31)

X

Y

G

G W

V Sin

V Cos V





 

 
  

Here, the overbar indicates the ground speed and wind speed have been divided by the 

VTAS. Table 4 shows the groundspeed ratio at =0, 90,180 and 270 degrees. 

 

 

(degrees) VGx VGY 

0 0 1+VW 

90 -1 VW 

180 0 -1+VW 

270 1 VW 

  

In order to determine the actual track of the aircraft during the turn, one must 

perform an integration of the groundspeed over time. We normally think of distance 

being equal to the speed multiplied by the time. However, this is only valid when the 

speed is  constant. As can be seen in Table 4, the groundspeed is varying around the 

circle. Note that when the aircraft is turning at some given rate of turn, , the time 

interval can be expressed as the change in  divided by the rate of turn, i.e. 

             (32)
d

dt



   

Table 4: Groundspeed Ratio Around the Circle 



Recalling that the rate of turn is just 
TAS

V

R
, we see that we can rewrite (32) as  

             (33)
TAS

Rd
dt

V


   

Therefore, the X and Y coordinates of the aircraft track can now be obtained by 

integrating the groundspeed over , between =0, and any arbitrary value of . The 

resulting expression for the normalized coordinates are  

 
0

0

[ ( )] 1

[ ( ) ]              (33)

f

f

W

X
Sin d

R

Y
Cos V d

R





 

 

  

 





  

Here f, is the value of  at the location we require X/R and Y/R. Elementary calculus 

provides us with the following values of X/R and Y/R: 

 

( )

( )           (34)

f

f W f

X
Cos

R

Y
Sin V

R



 



 

  

Equation (34) tells us that after making a 360 degree turn at a constant bank angle, the 

values of X/R and Y/R are given by  
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Therefore, after making a 360 degree turn at a constant bank angle, the aircraft will 

return to the same X/R location, but will be shifted downwind (+Y-direction) by the 

amount 2
W

Y
V

R
 . Note that 

2

TAS

R

V


 is exactly the time it take the aircraft to turn 360 

degrees (i.e.2 radians). Figure 7 shows the aircraft track at a constant bank angle, 



corresponding to wind speed ratios of 0, 0.1, 0.2, and 0.3. It is easy to see that at the 

end of the 360 degree turn, the Y/R values corresponding to VW =0, 0.1, 0.2, and 0.3 

are just 0, 0.2 , 0.4 , 0.6 .   and     

   

 

 

 

  

 Figure 7 clearly shows that a constant bank angle will not allow the aircraft to 

track a constant radius circle. However, it is important that all Pilots understand the 

following concept:  Consider at time zero two observers are situated right over the 
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Figure 7: Aircraft Track for a 360 Degree Turn at Constant Bank Angle 
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center of the circle to be flown. The first observer is stationary, and the second observer 

is travelling with the velocity of the air mass (i.e. the wind). The stationary observer will 

see the aircraft track as shown in Figure 7. However, the observer moving with the air 

mass velocity (i.e. the wind speed and direction) will see the aircraft executing a perfect 

circle. The radius of this circle will depend on the true airspeed and the bank angle 

flown, and will be determined from (26). 

 In Section 5 we show how the solution of the “Wind Triangle Problem” can be 

used to develop the exact solution to the Turn Around a Point maneuver.  

 

5.0 Exact Solution to the Turn Around a Point 

In order to determine the required rate of turn to perform a Turn Around a 

Point in the presence of a wind, it is necessary to relate the “Wind Triangle 

Problem” to the Turn Around a Point maneuver. Let us start off with a circle of a 

given radius R, and then divide it into 8 equal-angle sectors (i.e. 45 degrees 

each). Figure 8 shows a schematic of this operation.  

                                

 

 Figure 8: Schematic Showing the Division of the Circle into 8 Equal-Angle Sectors 



We now connect each of the sectors with straight lines, such that the beginning and 

ending point of each straight line lies on the circle. If we consider each of these straight 

lines as a road, it becomes clear that if one starts on the circle at the beginning of the 

road and then tracks along the road, the aircraft will end up at the endpoint of the road, 

which is also on the circle. Thus, it is easy to see that one needs to determine the wind 

correction angle along each of these roads in order to arrive at the endpoint on the 

circle. Note that except for the beginning and endpoints, these roads in Figure 8 do not 

lie on the circle. One can now consider the scenario of tracking a road from the 

beginning to the endpoint and then turning to the next road and tracking that road, 

continuing all around the circle. Each road will have associated with it, a wind correction 

angle and a groundspeed.  At the end of each road the aircraft will need to turn to a new 

heading which corresponds to the heading of the new road plus the wind correction 

angle for the new road. Since all the roads are the same distance, the higher the 

groundspeed, the shorter the time necessary to establish the correct heading change. 

Therefore, there are two parameters that affect the required rate of turn to stay on the 

circle. The first is the groundspeed, which controls the amount of time the aircraft has to 

change the heading; and second, the amount of heading change due to the differences 

in both the wind correction angles, and the change in course direction of the two 

consecutive roads. If we now consider increasing the number of sectors more and 

more, it is easy to see that the length of these roads becomes shorter and shorter and 

eventually the roads will be orientated tangent to the circle. In this limiting process, the 

track of the aircraft will lie exactly on the circle. 

 With the above process in mind, we can now develop a simple expression for the 

required rate of turn as a function of the angular position around the circle. Figure 2 

showed the set-up for the solution of the “Wind Triangle Problem”. Note that the angle  

is the relative wind angle measured from the tail of the aircraft. Figure 6 shows the 

orientation of the wind relative to the X-Y Coordinate System. It is easy to see that the 

angle  is the same as the angle  in Figure 6. Thus, (20) can simply be rewritten as 
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We can express the required heading of the aircraft relative to the X-axis in terms 

of both  and , i.e. 



 90            (37)
H

       

Since we are interested in the rate of turn of the aircraft, we need the rate of change of 

H
  with respect to time. This can be expressed as  

              (38)H
d d d

dt dt dt

  
    

The first term on the right hand side corresponds to the change in the angle of the road 

between two consecutive sectors, and is given by  

           (39)G TAS

G

d V V
V

dt R R


    

The second term requires the time rate of change of the wind correction angle. From 

(36) we see that  
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We can express the rate of change of the wind correction angle with respect to time as  

             (41)
d d d

dt d dt

  


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Substituting (39) and (41) into (38) we obtain the following expression for the rate of 

change of the heading 
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Recall that the rate of turn of the aircraft is given by (27). Thus, the required rate of turn 

that one would need in order for the aircraft to track the circle without a wind is TAS
V

R
. 

Therefore, we can now express the ratio of the required turn rate with a wind, to that 

without a wind as 
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In order to obtain  as a function of the angular position around the circle we need to 

obtain
d

d




 . We can differentiate (40) to obtain this derivative. The process of 

differentiation is just finding the slope of any function. Using elementary calculus we find 
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Substituting (44) into (43), and using (36) for the definition of the groundspeed, we 

arrive at the final result for , i.e. 
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( )
          (45)G

V

Cos 
    

Equations (36) and (45) provide the exact solution to the Turn Around A Point 

maneuver. It provides the wind correction angle, groundspeed, and turn rate as a 

function of the angular position measured from the tailwind position (=0). The solution 

is in terms of the wind speed ratio, 
W

V .Thus, once the wind speed ratio is specified, the 

entire solution to the Turn Around a Point is known. Although (45) provides the rate of 

turn, from a Pilot’s standpoint, it is best to express this in terms of the bank angle as a 

function of angular position around the circle.  Using (28) we can rewrite (45) as  
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Where the required bank angle in the no-wind case is
0
 , and   is the required bank 

angle for a finite wind speed ratio. Note that the no-wind bank angle is used because 

the actual radius of the turn can be related to the no-wind bank angle and the TAS (i.e. 

(26)).The information contained in (45) and (46) is extremely important in understanding 

how to execute a precise Turn Around a Point. In order to show the importance of these 

results, we will consider wind speed ratios ranging from 0 to 0.3. For typical General 

Aviation aircraft executing a Turn Around a Point, a wind speed ratio of 0.3 would 



correspond to a wind speed of 25-35 knots. Note that when 0
W

V    the groundspeed 

ratio, 1
G

V   and the wind correction angle is identically zero. Thus =1, and
0

  . 

Figure 9 shows the required rate of turn ratio  versus  for wind speed ratios 

corresponding to 0.1, 0.2, and 0.3. 

 

 

 

 

This Figure shows a number of important elements that Pilots need to be aware of in 

performing a precise Turn Around a Point. 

(a) Maximum turn rate is on the tailwind 

(b) Minimum turn rate is on the headwind 

(c) The turn rate is symmetric around the line connecting =0 and 180 degrees 

(d) The rate of change of the turn rate is nearly linear in regions away from the 

headwind or tailwind. This rate of change in the required turn rate is 

proportional to the wind speed ratio. 
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(e) In the neighborhood of the headwind or tailwind, the turn rate does not 

change much. This region near the headwind/tailwind becomes narrower as 

the wind speed ratio increases. 

(f) For wind speed ratios less than or equal to 0.3, the maximum wind correction 

angle is less than 20 degrees and thus Cos can be approximated by unity 

(i.e. within about 6 %). Therefore, the turning rate ratio can be approximated 

by
2

G
V  and the turning rate is dominated by the groundspeed ratio. 

(g) The position for which the turning rate ratio is unity does not correspond to 

the 90 degree (crosswind/downwind side) or the 270 degree 

(crosswind/upwind side) locations. This is because the groundspeed ratio is 

less than unity at the 90/270 degrees points. The location for =1 will occur 

slightly before 90 degrees and slightly after 270 degrees (i.e. on the tailwind 

side of the circle), the exact location depending on the wind speed ratio. 

From a Pilot’s standpoint in flying the maneuver, the turn rate is not as desirable 

a visual cue as the bank angle when performing ground reference maneuvers. 

Equation (46) provides the bank angle ratio as a function of . Figure 10 shows 

the required bank angle as a function of . Here we have assumed a no-wind 

bank angle of 45 degrees. 



 

  

This Figure provides critical information for the pilot in performing a precise Turn Around 

a Point. These key points are described below. 

(a) The maximum bank angle occurs on the tailwind.   

(b) The minimum bank angle on the headwind  

(c) The bank angle is symmetric around the line connecting =0 and 180 degrees 

(d) Compared to the no-wind bank angle, there is a larger decrease in bank 

angle on the headwind than there is an increase on the tailwind. As an 

example, for VW =0.3, the bank angle on the tailwind increases from 45 to 60 

degrees (15 degrees), whereas, on the headwind, the bank angle decreases 

from 45 to 25 degrees (20 degrees). 

(e) In the narrow region around the tailwind/headwind, the bank angle is nearly 

constant, whereas, at all other points around the circle, the bank angle is 

either continually increasing or continually decreasing.  

An important parameter in executing the maneuver is the “gradient bank 

angle”, which is defined as the required change in bank angle per degree of 
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change in position around the circle. It will be shown in the next Section that 

the “gradient bank angle” is proportional to the wind speed ratio, and is an 

extremely important parameter for executing the maneuver with precision. In 

addition, the higher the wind speed ratio, the narrow the region around the 

tailwind/headwind location where the bank angle remains constant.  

Figure 11 shows the wind correction angle versus angular position around 

the circle. 

 

 

Note that the wind correction angle is anti-symmetric around the line connecting =0 

and 180 degrees, with the positive values requiring the aircraft to be crabbed in toward 

the center of the circle, and the negative values requiring the aircraft to be crabbed 

outward away from the center of the circle. 

 Figure 12 shows the groundspeed ratio as a function of the angular position 

around the circle for the three wind speed ratios of interest. 
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As can be seen in Figure 12, the groundspeed ratio has the same character as both the 

required turn rate and the bank angle shown in Figures 9 and 10.  

 In Section 6 we discuss the fine points of executing a precision Turn Around a 

Point. 

6.0 Flying the Turn Around a Point 

The analysis in Section 5 provides a considerable amount of information 

that tells the Pilot exactly how to fly the maneuver. Clearly, when there is no 

wind, the Turn Around A Point maneuver is flown at constant airspeed at a given 

angle of bank corresponding to the radius of the circle to be flown. Although the 

aircraft is flown at a particular IAS for the maneuver, it is important to understand 

the true airspeed is what we are concerned about when performing the 

maneuver. For example, Table 1 shows that at 90 KTAS, the turn radius for a 45 

degree bank angle is 717 feet, and at 100 KTAS, the turn radius for the same 

bank angle is 885 feet. Thus, it is clear that one important part of training Student 
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Pilots to perform this maneuver is their ability to estimate distances from a point 

on the surface when flying at low altitudes. One can use a couple of different 

methods to help the Student become proficient in this task. The first method is to 

use the stripes on the runway when flying in the pattern. The distance from the 

beginning of any stripe to the beginning of the next stripe is 200 feet. Thus 4 

stripes amount to a distance of 800 feet, which is close to the 717 feet for the 45 

degree bank Turn Around a Point. In addition, one can fly at a height above the 

ground equal to the required radius, and then project a 45 degree line of sight 

from the horizontal, downward toward the surface. The intersection of the line of 

sight with the surface gives the radius from that point equal to the altitude the 

aircraft is flying over the ground. Although not exact, the method should be able 

to provide a value of the radius that is relatively close to the radius the Pilot is 

planning on using. 

When performing the maneuver without a wind, Table 1 should provide a 

very good first approximation to the required bank angle. However, since the 

radius is approximated, the Pilot may be required to change the bank angle 

slightly until a fixed bank angle is found that holds that exact radius. 

When we introduce the wind into the Turn Around A Point, the maneuver 

becomes significantly more complex. If one reads FAA-H-8083-3A, the FAA 

“Flight Training Handbook”, Chapter 4, the FAA recommends that if the Pilot 

wishes to use a maximum bank angle of 45 degrees,” the aircraft should enter 

the maneuver initially with a 45 degree bank on the tailwind, if the aircraft is at 

the correct distance from the point”. However, there is no quantitative information 

provided as to what that radius should be. Note that for a given TAS, the required 

radius will be a function of the wind speed ratio. Figure 13 shows the required 

bank angle during a Turn Around a Point corresponding to a no-wind bank angle 

of 35 degrees. It is clear that for a wind speed ratio of 0.1, the required bank 

angle on the tailwind (=0) is 40 degrees, whereas, for a wind speed ratio of 0.2, 

the required bank angle on the tailwind is 45 degrees. Since the no-wind bank 

angle is 35 degrees, the radius of the turn corresponding to a TAS of 90 knots, 

can be determined from (26), and is 1024 feet.  



 

  

 

Now, let us consider initiating the Turn Around a Point at a radius of 717 

feet from the center point. This corresponds to a no-wind bank angle of 45 

degrees at 90 KTAS. One can clearly see from Figure 10 that with a wind speed 

ratio of 0.1 (9 knots), the required bank angle on the tailwind would be 50 

degrees, and with a wind speed ratio of 0.2 (18 knots), the required bank angle 

on the tailwind would be 55 degrees. Although Figures 10 and 13 can be used to 

bracket the no-wind bank angle, we can determine the no-wind bank angle 

directly from equation (46). Note that on the downwind, the wind correction angle 

=0, and thus, Cos(0)=1. Since the maximum bank angle () is to be 45 

degrees, Tan (45) =1, and (46) reduces to the simple expression for the no-wind 

bank angle, i.e. 
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 As can be seen in (47), when the wind speed ratio is zero, the no-wind bank 

 angle is 45 degrees (i.e. 
1

0
(1) 45Tan    degrees). Note that for 0.2

W
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 no-wind bank angle would be 34.8 degrees, which corresponds closely to the 

 results shown in Figure 13. 

   In order not to exceed the maximum bank angle of 45 degrees on the 

 downwind, the Pilot needs to know the required radius of the turn. Since 

 equation (26) provides the  turn radius as a function of the bank angle and  the  

 true airspeed, it is easy to see that the required turn radius with a wind which 

 keeps the maximum bank  angle at 45 degrees, is given by 

         
2

0
(1 )         (48)

W
r r V    

 Here, 
0

r  is the required no-wind radius, and r is the required radius 

 corresponding to a wind speed ratio of 
W

V . Note that the required no-wind radius 

 corresponding to a 45 degree bank angle is given by   
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V
r

g
   

  It is easy to show from the above equations that if the Pilot chose a no-

 wind bank angle of 45 degrees (i.e. Figure 10), the maximum bank angle that 

 would occur on the  downwind would be given by  

           
2( ) (1 )          (50)

W
Tan V     

 For example, in the case of 0.3
W

V  , the value of =59.4 degrees, which 

 corresponds to the value shown in Figure 10 (i.e., the green line). 

 Figure 13 also provides an additional key piece of information that all 

Pilots should be aware of: On the downwind side (=90), and on the upwind side 

(=270), the required bank angle would be close to the no-wind bank angle, i.e. 

35 degrees. One needs to understand that the reason it is not exactly 35 degrees 

is that the groundspeed at these two points is not equal to the true airspeed, due 

to the wind correction angles established at those points.  

 We should point out that in all the current textbooks which discuss how to 

fly the Turn Around a Point, what is emphasized is: (a) The maximum bank is on 

the tailwind, (b) The minimum bank is on the headwind. Thus the bank angle 

must be increasing from the point when the aircraft is on the headwind, to the 

point when the aircraft is on the tailwind; and the bank angle must be decreasing 

from the point when the aircraft is on the tailwind, to the point when the aircraft is 



on the headwind. Therefore, it is left up to the Flight Instructor/Pilot to figure out 

the missing details. These missing details will be discussed below. 

 The only two quantities of interest to the pilot when flying a Turn Around a 

Point are: (a) The bank angle as a function of angular position around the circle, 

and (b) The “gradient bank angle” as a function of the angular position around 

the circle. Since Figure 13 shows the required bank angle as a function of the 

angular position around the circle, the “gradient bank angle” is just the slope of 

this curve as a function of the angular position the circle. Since (46) provides the 

bank angle as a function of , one can differentiate this expression to obtain the 

slope of the curve. The “gradient bank angle” parameter is given below 
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Note that the “gradient bank angle” is proportional to the wind speed ratio, so that 

increasing the wind speed ratio by a factor of 2 will increase the required 

“gradient bank angle” by a factor of 2. In addition, it is easy to see that the 

“gradient bank angle” is anti-symmetric around the line connecting =0 and180 

degrees.  

We can now evaluate the “gradient bank angle” at points 1-4 around the 

circle. At = 0 and =180, the wind correction angle,  is zero, and therefore

0
d

d




 . When =90 or =270, the “gradient bank angle” is given by  
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 Where the minus sign corresponds to =90, and the plus sign corresponds to 

 =270. Figure 14 shows the “gradient bank angle” for a no-wind bank angle of 35 

 degrees, corresponding to the three wind speed ratios of interest. 



 

 

 

 

This figure provides the Pilot with the most important information on how to fly a 

precision Turn Around a Point. The maximum “gradient bank angle”, which 

occurs near =90 and =270, is only 0.3. This means that for every 10 degrees 

around the circle, the bank angle will change no more than 3 degrees. At other 

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240 255 270 285 300 315 330 345 360

"G
ra

d
ie

n
t 

B
a

n
k
 A

n
g

le
" 

 

Vw=0.1

Vw=0.2

Vw=0.3

Point 2 Point 4 Point 3 
Point 1 

Figure 14: “Gradient Bank Angle” Versus  for Various Wind Speed Ratios 

No-Wind Bank Angle 35 Degrees 



points around the circle the required change in bank angle every 10 degrees is 

less than this value. In fact on the tailwind (point 1) and the headwind (point 3), 

the “gradient bank angle” is identically zero, which means the bank angle is held 

constant for a short period of time when near these points. Thus, even with a 

wind speed ratio of 0.3, which when flying the maneuver at a TAS of 90 knots, 

corresponds to a 27 knot wind, the maneuver is still flown with  very small bank 

angle increases or decreases as the aircraft proceeds around the circle. 

 If we follow the aircraft around the circle, starting from the tailwind 

position, we can summarize the execution of the maneuver below: 

(1) The aircraft enters with the maximum bank angle at the tailwind point. The 

bank angle is held fairly constant for a short angular distance in travelling 

from point 1 to point 2. 

(2) The bank angle starts to decrease first at a slow rate, and then at a faster 

rate, until the aircraft is near point 2. Note that this faster rate would be no 

more than 3 degrees for every 10 degrees of angular movement around the 

circle. 

(3) After passing point 2, the bank angle continues to decrease at a slower rate 

until the aircraft is close to the headwind point, after which the bank angle is 

held fairly constant at its minimum value. 

(4) After passing point 3, the bank angle is held fairly constant for a short angular 

distance in travelling from point 3 to 4, after which the bank angle starts to 

increase at a faster rate as the aircraft approaches point 4. Again, the bank 

angle increase would be less than 3 degrees per 10 degrees of angular 

movement around the circle. 

(5) After passing point 4, the bank angle will continue to increase at a slower rate 

until the bank angle is again at its maximum near point 1. This maximum bank 

angle will be held for a short angular distance past point 1.  

After completing step (5), steps (1)-(5) would be repeated.  

  Up to this point in the discussion, we have not considered which variables 

 the Pilot should be focusing on during the execution of this maneuver. Assuming 

 the TAS is fixed, there are four variables that can be followed during the 

 execution of the Turn Around a Point. These are: 

(a) Radius of the turn 

(b) Groundspeed  

(c) Wind correction angle 

(d) Bank angle 



Since we are attempting to fly a constant radius around the point, the primary variable 

that we should be focusing on is the radius of the turn. The groundspeed is also a 

primary variable, in that changes in groundspeed are an indication of a required 

increase or decrease in bank angle. Although the wind correction angle is something 

that will tell us which direction the wind is blowing, it is not a variable that warrants a lot 

of the Pilot’s attention. The argument is that if the aircraft is tracking directly over the 

circle, then the wind correction angle must be correct at each point around the circle. 

Since Figure 14 showed the importance of the “gradient bank angle” in performing a 

precision Turn Around a Point, we still require some information on how the Pilot is 

going to vary the rate of change in the bank angle as the aircraft proceeds around the 

circle. Since the groundspeed is a primary variable that the Pilot follows around the 

circle, we will now show that the rate of change of the groundspeed around the circle is 

a good indicator of the “gradient bank angle” parameter. 

 The rate of change of the groundspeed with respect to the angular position 

around the circle can be obtained by differentiating the groundspeed given in (36). The 

resulting expression is given by 
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We can consider this expression to be the “gradient groundspeed” parameter. We can 

compare the “gradient bank angle” with the “gradient groundspeed”, which is shown in 

Figure 15 for the three wind speed ratios of interest. The comparison is in relatively 

good agreement, with very close agreement on the headwind side of the circle and 

some deviation on the tailwind side of the circle. The deviation on the tailwind side of 

the circle is significantly smaller at the lower wind speed ratio. As the wind speed ratio 

increases, there is a slight angular shift between the peaks in the magnitude of both 

gradient parameters on the tailwind side of the circle. Therefore, it is clear that the 

“gradient groundspeed” parameter is representative of the “gradient bank angle”, and 

can be used in place of the “gradient bank angle” parameter when flying the Turn 

Around a Point.  

Thus, when flying the maneuver, the rate of change in the groundspeed can be 

used as an indication of how fast the bank angle will need to be increased or 

decreased. If the groundspeed is increasing at a faster rate, the bank angle will need to 

be increased at a faster rate. If the rate of increase in groundspeed is decreasing, a 

slower increase in bank angle will be required, and vice versa. 

 



 

 

 

 

  

7.0 Suggestions for Setting Up the Turn Around a Point 

 In Section 6 we discussed the fine points of executing a precision Turn 

 Around a Point. We now provide some important details of how to select the 

 radius of the  turn which will keep the maximum bank angle at 45 degrees. The 

 procedure we use is described below: 

(a) Select a TAS that will be used to fly the maneuver. One can use the computer 

on the airspeed indicator to show TAS, by inputting the OAT and the pressure 

altitude. 

(b) For the given wind velocity, compute the wind speed ratio 

Figure 15: Comparison of the “Gradient Bank Angle” and “Gradient Groundspeed” Parameters Versus  

No-Wind Bank Angle 35 Degrees 
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(c) Equation (47) can be used to determine the no-wind bank angle 

(d) Equation (26) can then be used to determine the radius of the turn 

corresponding to the TAS and no-wind bank angle. 

(e) Fly an altitude equal to the turn radius and project a 45 degree angle from the 

horizontal to the ground, such that your 45 degree line of sight intersects the 

center point of the circle. Once the radius is correct, the altitude can be 

changed to be between 600-1000AGL.  

It is important that one fly at the highest altitude possible from the standpoint of 

safety, but low enough that would allow the Pilot to observe changes in the 

groundspeed of the aircraft. 

 Other suggestions for the Flight Instructor when training Student Pilots in Turns 

Around a Point are  

(a) Practice the maneuver with a very light wind (i.e., no-wind) using a bank 

angle of both 35 and 45 degrees. In this case the bank angle will be nearly 

constant. 

(b) Practice the maneuver with a wind speed of up to 25 knots using a no-wind 

bank angle of about 35 degrees, which will keep the maximum bank angle 

near 45 degrees. 

(c) Use a different TAS with the same wind speed to demonstrate to the Student  

Pilot that the wind speed ratio is the key parameter which will control the both 

maximum bank angle and the “gradient bank angle” around the circle. In this 

case, the radius of the turn will need to decrease, since we need to keep the 

no-wind bank angle the same. 

With the knowledge gained from this White Paper, both the Flight Instructor 

and the Student Pilot should be able to enter the maneuver at any point on the 

circle. However, if not entering on either the tailwind or the headwind points, the 

Pilot will need to have the proper wind correction angle on the entry. The wind 

correction angle on the upwind side or the downwind side was previously shown 

to be equal to approximately sixty times the wind speed ratio, i.e. equation (19), 

with the corresponding bank angle being nearly equal to the no-wind bank angle. 

This should be a very close first approximation to getting the aircraft to track the 

circle correctly. However, since the wind correction angle is zero on both the 

headwind and tailwind, it is easier to enter on either the headwind or the tailwind, 

Although the “Flight Training Handbook” recommends entering on the tailwind, 

since the aircraft will be at its maximum bank angle, entering on the upwind does 

have the advantage that the initial bank angle will be shallower and thus, the 

entry would be much smoother. Thereafter, the bank angle would be increased 



by no more than 3 degrees per every 10 degrees of angular movement around 

the circle.  

 

8.0 Conclusions 

 In this White Paper we have derived the exact solution to the Turn Around a 

Point maneuver. The solution provides (1) The ratio of the groundspeed to the TAS, (2) 

the wind correction angle, (3) the bank angle, and (4) the rate of change in bank angle 

as a function of the angular position measured from the point when the aircraft is on the 

tailwind. The solution is a one-parameter family of curves, where the parameter is the 

wind speed ratio, i.e. the ratio of the wind speed to the TAS. The required Pilot input is 

the bank angle and rate of change in bank angle as a function of the angular position 

from the tailwind location. Based on these results, recommendations on how to fly the 

maneuver with greater precision are discussed. One key result is that the required rate 

of turn to stay on the circle can be closely approximated by the square of the 

groundspeed. Thus, using changes in groundspeed as the main cue for changes in 

bank angle is appropriate in maintaining the track around the circle. Universal curves for 

wind speed ratios of 0.1, 0.2 and 0.3 are provided, which are very useful for Flight 

Instructors in training Student Pilots on this maneuver.  

 The required turn radius for the Turn Around a Point maneuver, which keeps 

the maximum bank angle at 45 degrees on the downwind, has also been derived. It has 

been shown that the ratio of the required radius of the turn to the no-wind turn radius is 

just given by
2(1 )

W
V . This information is extremely useful to the Flight Instructor in 

setting up the maneuver. 

 Finally, it is important for all Flight Instructors and Pilots to understand that for 

wind speeds less than 30 knots, the rate of change of bank angle with angular distance 

around the circle is less than 3 degrees of bank angle change for every 10 degrees of 

angular movement around the circle. Therefore prior to performing the Turn Around a 

Point, the Student Pilot should have become proficient in turning flight during which the 

bank angle is “gradually” increased and decreased. Again, the term “gradually” has now 

been quantified. 
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